SLVSHW7 May   2024 TPS55189-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 I2C Timing Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  VCC Power Supply
      2. 6.3.2  EXTVCC Power Supply
      3. 6.3.3  I2C Address Selection
      4. 6.3.4  Input Undervoltage Lockout
      5. 6.3.5  Enable and Programmable UVLO
      6. 6.3.6  Soft Start
      7. 6.3.7  Shutdown and Load Discharge
      8. 6.3.8  Switching Frequency
      9. 6.3.9  Switching Frequency Dithering
      10. 6.3.10 Inductor Current Limit
      11. 6.3.11 Internal Charge Path
      12. 6.3.12 Output Voltage Setting
      13. 6.3.13 Output Current Monitoring and Cable Voltage Droop Compensation
      14. 6.3.14 Output Current Limit
      15. 6.3.15 Overvoltage Protection
      16. 6.3.16 Output Short Circuit Protection
      17. 6.3.17 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 PWM Mode
      2. 6.4.2 Power Save Mode
    5. 6.5 Programming
      1. 6.5.1 Data Validity
      2. 6.5.2 START and STOP Conditions
      3. 6.5.3 Byte Format
      4. 6.5.4 Acknowledge (ACK) and Not Acknowledge (NACK)
      5. 6.5.5 target Address and Data Direction Bit
      6. 6.5.6 Single Read and Write
      7. 6.5.7 Multi-Read and Multi-Write
  8. Register Maps
    1. 7.1 REF Register (Address = 0h, 1h) [reset = 10100100b, 00000001b]
    2. 7.2 IOUT_LIMIT Register (Address = 2h) [reset = 11100100b]
    3. 7.3 VOUT_SR Register (Address = 3h) [reset = 00000001b]
    4. 7.4 VOUT_FS Register (Address = 4h) [reset = 00000011b]
    5. 7.5 CDC Register (Address = 5h) [reset = 11100000b]
    6. 7.6 MODE Register (Address = 6h) [reset = 00100000b]
    7. 7.7 STATUS Register (Address = 7h) [reset = 00000011b]
    8. 7.8 Register Summary
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Switching Frequency
        2. 8.2.2.2 Output Voltage Setting
        3. 8.2.2.3 Inductor Selection
        4. 8.2.2.4 Input Capacitor
        5. 8.2.2.5 Output Capacitor
        6. 8.2.2.6 Output Current Limit
        7. 8.2.2.7 Loop Stability
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RYQ|21
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TPS55189-Q1 is an 8A buck-boost DC-to-DC converter with the four MOSFETs integrated. The TPS55189-Q1 can operate over a wide range of 3.0V to 27V input voltage and 0.8V to 22V output voltage. It can transition among buck mode, buck-boost mode and boost mode smoothly according to the input voltage and the set output voltage. The TPS55189-Q1 operates in buck mode when the input voltage is greater than the output voltage and in boost mode when the input voltage is less than the output voltage. When the input voltage is close to the output voltage, the TPS55189-Q1 operates in one-cycle buck and one-cycle boost mode alternately.

The TPS55189-Q1 uses an average current mode control scheme. Current mode control provides simplified loop compensation, rapid response to the load transients, and inherent line voltage rejection. An error amplifier compares the feedback voltage with the internal reference voltage. The output of the error amplifier determines the average inductor current.

An internal oscillator can be configured to operate over a wide range of switching frequency from 200kHz to 2.2MHz. The internal oscillator can also synchronize to an external clock applied to the DITH/SYNC pin. To minimize EMI, the TPS55189-Q1 can dither the switching frequency at ±7% of the set frequency.

The TPS55189-Q1 works in fixed-frequency PWM mode at moderate to heavy load currents. In light load condition, the TPS55189-Q1 can be configured to automatically transition to PFM mode or be forced in PWM mode by setting the corresponding bit in an internal register.

The output voltage of the TPS55189-Q1 is adjustable by setting the internal register through I2C interface. An internal 11-bit DAC adjusts the reference voltage related to the value written into the REF register. The device can also limit the output current by placing a current sense resistor in the output path. These two functions support the programmable power supply (PPS) feature of the USB PD.

The TPS55189-Q1 provides average inductor current limit of 8A typically. In addition, it provides cycle-by-cycle peak inductor current limit during transient to protect the device against overcurrent condition beyond the capability of the device.

A precision voltage threshold of 1.23V with 5µA sourcing current at the EN/UVLO pin supports programmable input undervoltage lockout (UVLO) with hysteresis. The output overvoltage protection (OVP) feature turns off the high-side FETs to prevent damage to the devices powered by the TPS55189-Q1.

The device provides hiccup mode option to reduce the heating in the power components when output short circuit happens. When the hiccup mode is enabled, the TPS55189-Q1 turns off for 76ms and restarts at soft start-up.