SLVSGW6 August   2024 TPS55287

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 I2C Timing Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  VCC Power Supply
      2. 6.3.2  EXTVCC Power Supply
      3. 6.3.3  Operation Mode Setting
      4. 6.3.4  Input Undervoltage Lockout
      5. 6.3.5  Enable and Programmable UVLO
      6. 6.3.6  Soft Start
      7. 6.3.7  Shutdown and Load Discharge
      8. 6.3.8  Switching Frequency
      9. 6.3.9  Switching Frequency Dithering
      10. 6.3.10 Inductor Current Limit
      11. 6.3.11 Internal Charge Path
      12. 6.3.12 Output Voltage Setting
      13. 6.3.13 Output Current Monitoring and Cable Voltage Droop Compensation
      14. 6.3.14 Output Current Limit
      15. 6.3.15 Overvoltage Protection
      16. 6.3.16 Output Short Circuit Protection
      17. 6.3.17 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 PWM Mode
      2. 6.4.2 Power Save Mode
    5. 6.5 Programming
      1. 6.5.1 Data Validity
      2. 6.5.2 START and STOP Conditions
      3. 6.5.3 Byte Format
      4. 6.5.4 Acknowledge (ACK) and Not Acknowledge (NACK)
      5. 6.5.5 Target Address and Data Direction Bit
      6. 6.5.6 Single Read and Write
      7. 6.5.7 Multiread and Multiwrite
    6. 6.6 Register Maps
      1. 6.6.1 REF Register (Address = 0h, 1h)
      2. 6.6.2 IOUT_LIMIT Register (Address = 2h) [reset = 11100100h]
      3. 6.6.3 VOUT_SR Register (Address = 3h) [reset = 00000001h]
      4. 6.6.4 VOUT_FS Register (Address = 4h) [reset = 00000011h]
      5. 6.6.5 CDC Register (Address = 5h) [reset = 11100000h]
      6. 6.6.6 MODE Register (Address = 6h) [reset = 00100000h]
      7. 6.6.7 STATUS Register (Address = 7h) [reset = 00000011h]
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Switching Frequency
        2. 7.2.2.2 Output Voltage Setting
        3. 7.2.2.3 Inductor Selection
        4. 7.2.2.4 Input Capacitor
        5. 7.2.2.5 Output Capacitor
        6. 7.2.2.6 Output Current Limit
        7. 7.2.2.7 Loop Stability
      3. 7.2.3 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The TPS55287 is a synchronous buck-boost converter that is optimized for converting battery voltage or adapter voltage into power supply rails. The TPS55287 integrates four MOSFET switches, providing a compact solution for USB power delivery (USB PD) application.

The TPS55287 has up to 36V input voltage capability. Through the I2C interface, the output voltage of the TPS55287 can be programmed from 0.8V to 22V with 10mV step. When working in boost mode, the device can deliver 35W from a 12V input. It is capable of delivering 25W from 9V input voltage.

The TPS55287 employs an average current-mode control scheme. The switching frequency is programmable from 200kHz to 2.2MHz by an external resistor and can be synchronized to an external clock. The TPS55287 also provides optional spread spectrum to minimize peak EMI.

The TPS55287 offers output overvoltage protection, average inductor current limit, cycle-by-cycle peak current limit, and output short circuit protection. The TPS55287 also makes sure it safely operates with optional output current limit and hiccup-mode protection in sustained overload conditions.

The TPS55287 can use a small inductor and small capacitors with high switching frequency. It is available in a 3.0mm × 5.0mm QFN package.

Device Information
PART NUMBERPACKAGE (1)BODY SIZE
TPS55287VQFN-HR3.0mm × 5.0mm
For all available packages, see the Section 12 at the end of the data sheet.
TPS55287 Typical
          Application Circuit Typical Application Circuit