SLVSFQ8A December   2020  – December 2021 TPS552882-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  VCC Power Supply
      2. 7.3.2  Operation Mode Setting
      3. 7.3.3  Input Undervoltage Lockout
      4. 7.3.4  Enable and Programmable UVLO
      5. 7.3.5  Soft Start
      6. 7.3.6  Shutdown
      7. 7.3.7  Switching Frequency
      8. 7.3.8  Switching Frequency Dithering
      9. 7.3.9  Inductor Current Limit
      10. 7.3.10 Internal Charge Path
      11. 7.3.11 Output Voltage Setting
      12. 7.3.12 Output Current Indication and Cable Voltage Drop Compensation
      13. 7.3.13 Integrated Gate Drivers
      14. 7.3.14 Output Current Limit
      15. 7.3.15 Overvoltage Protection
      16. 7.3.16 Output Short Circuit Protection
      17. 7.3.17 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 PWM Mode
      2. 7.4.2 Power Save Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Switching Frequency
        3. 8.2.2.3 Output Voltage Setting
        4. 8.2.2.4 Inductor Selection
        5. 8.2.2.5 Input Capacitor
        6. 8.2.2.6 Output Capacitor
        7. 8.2.2.7 Output Current Limit Sense Resistor
        8. 8.2.2.8 Loop Stability
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design With WEBENCH® Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Glossary
    6. 11.6 Electrostatic Discharge Caution
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

PWM Mode

In FPWM mode, the TPS552882-Q1 keeps the switching frequency unchanged in light load condition. When the load current decreases, the output of the internal error amplifier decreases as well to reduce the average inductor current down to deliver less power from input to output. When the output current further reduces, the current through the inductor decreases to zero during the switch-off time. The high-side N-MOSFET is not turned off even if the current through the MOSFET is zero. Thus, the inductor current changes its direction after it runs to zero. The power flow is from output side to input side. The efficiency is low in this condition. However, with the fixed switching frequency, there is no audible noise or other problems that might be caused by low switching frequency in light load condition.