SLVSFC5 November   2020 TPS552882

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  VCC Power Supply
      2. 7.3.2  Operation Mode Setting
      3. 7.3.3  Input Undervoltage Lockout
      4. 7.3.4  Enable and Programmable UVLO
      5. 7.3.5  Soft Start
      6. 7.3.6  Shutdown
      7. 7.3.7  Switching Frequency
      8. 7.3.8  Switching Frequency Dithering
      9. 7.3.9  Inductor Current Limit
      10. 7.3.10 Internal Charge Path
      11. 7.3.11 Output Voltage Setting
      12. 7.3.12 Output Current Indication and Cable Voltage Drop Compensation
      13. 7.3.13 Integrated Gate Drivers
      14. 7.3.14 Output Current Limit
      15. 7.3.15 Overvoltage Protection
      16. 7.3.16 Output Short Circuit Protection
      17. 7.3.17 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 PWM Mode
      2. 7.4.2 Power Save Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 5V Power Supply Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Switching Frequency
        3. 8.2.2.3 Output Voltage Setting
        4. 8.2.2.4 Inductor Selection
        5. 8.2.2.5 Input Capacitor
        6. 8.2.2.6 Output Capacitor
        7. 8.2.2.7 Output Current Limit
        8. 8.2.2.8 Loop Stability
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design With WEBENCH® Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Glossary
    6. 11.6 Electrostatic Discharge Caution

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Current Indication and Cable Voltage Drop Compensation

The TPS552882 outputs a voltage at the CDC pin proportional to the sensed voltage across a output current sensing resistor between the ISP pin and the ISN pin. Equation 7 shows the exact voltage at the CDC pin related to the sensed output current.

Equation 7. GUID-B6A7FA09-382B-47CB-B97E-A919D144DDF1-low.gif

To compensate the voltage drop across a cable from the terminal of the USB port to its powered device, the TPS552882 can lift its output voltage in proportion to the load current by placing a resistor between the CDC pin and AGND pin.

When using external output voltage feedback on the TPS552882, the output voltage rises in proportional to the current sourcing from the CDC pin through the resistor at the CDC pin. It is recommended to use 100-kΩ resistance for the up resistor of the resistor divider. Equation 8 shows the output voltage rise versus the sensed output current, resistance at the CDC pin, and the up resistor of the output voltage feedback resistor divider.

Equation 8. GUID-5C161F8A-652E-4F8A-A6AA-32F4F9F30B68-low.gif

where

  • RFB_UP is the up resistor of the resistor divider between the output and the FB/INT pin
  • RCDC is the resistor at the CDC pin

When RFB_UP is 100 kΩ, the output voltage rise versus the sensed output current and the resistor at the CDC pin is shown in Figure 7-6.

GUID-20663525-34E7-4A4C-91DD-27F0F184D56A-low.gif Figure 7-6 Output Voltage Rise vs Output Current