SLVSH28A december   2022  – april 2023 TPS552892

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  VCC Power Supply
      2. 7.3.2  EXTVCC Power Supply
      3. 7.3.3  Input Undervoltage Lockout
      4. 7.3.4  Enable and Programmable UVLO
      5. 7.3.5  Soft Start
      6. 7.3.6  Shutdown
      7. 7.3.7  Switching Frequency
      8. 7.3.8  Switching Frequency Dithering
      9. 7.3.9  Inductor Current Limit
      10. 7.3.10 Internal Charge Path
      11. 7.3.11 Output Voltage Setting
      12. 7.3.12 Output Current Monitoring and Cable Voltage Droop Compensation
      13. 7.3.13 Output Current Limit
      14. 7.3.14 Overvoltage Protection
      15. 7.3.15 Output Short Circuit Protection
      16. 7.3.16 Power Good
      17. 7.3.17 Constant Current Output Indication
      18. 7.3.18 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 PWM Mode
      2. 7.4.2 Power Save Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Switching Frequency
        2. 8.2.2.2 Output Voltage Setting
        3. 8.2.2.3 Inductor Selection
        4. 8.2.2.4 Input Capacitor
        5. 8.2.2.5 Output Capacitor
        6. 8.2.2.6 Output Current Limit
        7. 8.2.2.7 Loop Stability
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Capacitor

In boost mode, the output capacitor conducts high ripple current. The output capacitor RMS ripple current is given by Equation 15, where the minimum input voltage and the maximum output voltage correspond to the maximum capacitor current.

Equation 15. GUID-3244A493-39A1-469E-9D63-AC540A6DF56C-low.gif

where

  • ICOUT(RMS) is the RMS current through the output capacitor
  • IOUT is the output current

In this example, the maximum output ripple RMS current is 1.7 A.

The ESR of the output capacitor causes an output voltage ripple given by Equation 16 in boost mode.

Equation 16. GUID-6EB4CD2B-63A3-4924-AE78-3DE7689918ED-low.gif

where

  • RCOUT is the ESR of the output capacitance

The capacitance also causes a capacitive output voltage ripple given by Equation 17 in boost mode. When input voltage reaches the minimum value and the output voltage reaches the maximum value, there is the largest output voltage ripple caused by the capacitance.

Equation 17. GUID-0F82C539-CE84-4F57-AE55-EC8C89A7B921-low.gif

Typically, a combination of ceramic capacitors and bulk electrolytic capacitors is needed to provide low ESR, high ripple current, and small output voltage ripple. From the required output voltage ripple, use Equation 16 and Equation 17 to calculate the minimum required effective capacitance of the COUT.

Add a 0.1-μF/0402 package ceramic capacitor and place it close to VOUT pin and GND pin to suppress high frequency noise.