SLVS484C June   2003  – December 2014 TPS61090 , TPS61091 , TPS61092

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Electrical Characteristics
    5. 7.5 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Synchronous Rectifier
      2. 9.3.2 Controller Circuit
      3. 9.3.3 Device Enable
      4. 9.3.4 Undervoltage Lockout
      5. 9.3.5 Softstart
      6. 9.3.6 Power Save Mode and Synchronization
      7. 9.3.7 Low Battery Detector Circuit—LBI/LBO
      8. 9.3.8 Low-EMI Switch
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Typical Application Circuit for Adjustable Output Voltage Option
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Programming the Output Voltage
          2. 10.2.1.2.2 Programming the LBI/LBO Threshold Voltage
          3. 10.2.1.2.3 Inductor Selection
          4. 10.2.1.2.4 Capacitor Selection
            1. 10.2.1.2.4.1 Input Capacitor
            2. 10.2.1.2.4.2 Output Capacitor DC-DC Converter
            3. 10.2.1.2.4.3 Small Signal Stability
        3. 10.2.1.3 Application Curves
      2. 10.2.2 TPS6109x Application Schematic of 5 Vout With Maximum Output Power
      3. 10.2.3 TPS6109x Application Schematic of 5 Vout and Auxiliary 10 Vout With Charge Pump
      4. 10.2.4 TPS6109x Application Schematic of 5 Vout and Auxiliary -5 Vout With Charge Pump
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Related Links
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RSA|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Input voltage on LBI –0.3 3.6 V
Input voltage on SW, VOUT, LBO, VBAT, SYNC, EN, FB –0.3 7 V
TA Operating free air temperature –40 85 °C
TJ Maximum junction temperature 150 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±XXX V may actually have higher performance.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±YYY V may actually have higher performance.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VI Supply voltage at VBAT 1.8 5.5 V
L Inductance 2.2 6.8 µH
Ci Input, capacitance 10 µF
Co Output capacitance 22 100
TA Operating free air temperature –40 85 °C
TJ Operating virtual junction temperature –40 125

7.4 Electrical Characteristics

over recommended free-air temperature range and over recommended input voltage range (typical values are at an ambient temperature range of 25°C) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DC-DC STAGE
VI Input voltage range 1.8 5.5 V
VO TPS61090 output voltage range 1.8 5.5
VFB TPS61090 feedback voltage 490 500 510 mV
f Oscillator frequency 500 600 700 kHz
Frequency range for synchronization 500 700
ISW Switch current limit VOUT= 5 V 2000 2200 2500 mA
Start-up current limit 0.4 x ISW
Boost switch on resistance VOUT= 5 V 55
Rectifying switch on resistance VOUT= 5 V 55
Total accuracy –3% 3%
Line regulation 0.6%
Load regulation 0.6%
Quiescent current into VBAT IO = 0 mA, VEN = VBAT = 1.8 V, VOUT =5 V 10 25 µA
into VOUT IO = 0 mA, VEN = VBAT = 1.8 V, VOUT = 5 V 10 20
Shutdown current VEN= 0 V, VBAT = 2.4 V 0.1 1
CONTROL STAGE
VUVLO Under voltage lockout threshold VLBI voltage decreasing 1.5 V
VIL LBI voltage threshold VLBI voltage decreasing 490 500 510 mV
LBI input hysteresis 10
LBI input current EN = VBAT or GND 0.01 0.1 µA
LBO output low voltage VO = 3.3 V, IOI = 100 µA 0.04 0.4 V
LBO output low current 100 µA
LBO output leakage current VLBO = 7 V 0.01 0.1
VIL EN, SYNC input low voltage 0.2 × VBAT V
VIH EN, SYNC input high voltage 0.8 × VBAT
EN, SYNC input current Clamped on GND or VBAT 0.01 0.1 µA
Overtemperature protection 140 °C

7.5 Typical Characteristics

Table 1. Table of Graphs

DC-DC Converter Figure
Maximum output current vs Input voltage Figure 1, Figure 2
Efficiency vs Output current (TPS61090) (VO = 2.5 V, VI = 1.8 V, VSYNC = 0 V) Figure 3
vs Output current (TPS61091) (VO = 3.3 V, VI = 1.8 V, 2.4 V, VSYNC = 0 V) Figure 4
vs Output current (TPS61092) (VO = 5.0 V, VI = 2.4 V, 3.3 V, VSYNC = 0 V) Figure 5
vs Output current (TPS61091) (IO = 10 mA, 100 mA, 500 mA, VSYNC = 0 V) Figure 6
vs Output current (TPS61092) (IO = 10 mA, 100 mA, 500 mA, VSYNC = 0 V) Figure 7
Output voltage vs Output current (TPS61091) (VI = 2.4 V) Figure 8
vs Output current (TPS61092) (VI = 3.3 V) Figure 9
No-load supply current into VBAT Voltage (TPS61092) Figure 10
No-load supply current into VOUT vs Input voltage (TPS61092) Figure 11
Minimum Load Resistance at Start-Up vs Input Voltage (TPS61092) (VI = 3.3 V) Figure 12
IO_v_VI31_LVS484.gifFigure 1. TPS61091 Maximum Output Current vs Input Voltage
Eff_v_IO30_LVS484.gifFigure 3. TPS61090 Efficiency vs Output Current
Eff_v_IO32_LVS484.gifFigure 5. TPS61092 Efficiency vs Output Current
Eff_v_VI32_LVS484.gifFigure 7. TPS61092 Efficiency vs Output Current
VO_v_IO32_LVS484.gifFigure 9. TPS61092 Output Voltage vs Output Current
NLout_v_VI_LVS484.gifFigure 11. TPS61092 No-Load Supply Current Into VOUT vs Input Voltage
IO_v_VI32_LVS484.gifFigure 2. TPS61092 Maximum Output Current vs Input Voltage
Eff_v_IO31_LVS484.gifFigure 4. TPS61091 Efficiency vs Output Current
Eff_v_VI31_LVS484.gifFigure 6. TPS61091 Efficiency vs Output Current
VO_v_IO31_LVS484.gifFigure 8. TPS61091 Efficiency vs Output Current
NLbat_v_VI_LVS484.gifFigure 10. TPS61092 No-Load Supply Current Into VBAT Voltage
minldr_vi_lvds484.gifFigure 12. Minimum Load Resistance at Start-Up vs Input Voltage