SLVS427D JUNE   2002  – May 2015 TPS61120 , TPS61121 , TPS61122

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Controller Circuit
      2. 9.3.2 Synchronous Rectifier
      3. 9.3.3 LDO
      4. 9.3.4 Device Enable
        1. 9.3.4.1 Undervoltage Lockout
        2. 9.3.4.2 Softstart
      5. 9.3.5 LDO Enable
      6. 9.3.6 Power Good
      7. 9.3.7 Low Battery Detector Circuit—LBI/LBO
      8. 9.3.8 Low-EMI Switch
    4. 9.4 Device Functional Modes
      1. 9.4.1 Power Save Mode
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Solution for Maximum Output Power
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Programming the Output Voltage
            1. 10.2.1.2.1.1 DC-DC Converter
            2. 10.2.1.2.1.2 LDO
          2. 10.2.1.2.2 Programming the LBI/LBO Threshold Voltage
          3. 10.2.1.2.3 Inductor Selection
          4. 10.2.1.2.4 Capacitor Selection
            1. 10.2.1.2.4.1 Input Capacitor
            2. 10.2.1.2.4.2 Output Capacitor DC-DC Converter
              1. 10.2.1.2.4.2.1 Small Signal Stability
            3. 10.2.1.2.4.3 Output Capacitor LDO
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Low Profile Solution, Maximum Height 1.8 mm
      3. 10.2.3 Dual Power Supply With Auxiliary Positive Output Voltage
      4. 10.2.4 Dual Power Supply With Auxiliary Negative Output Voltage
      5. 10.2.5 Single Output Using LDO as Filter
      6. 10.2.6 Dual Input Power Supply Solution
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PW|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range unless otherwise noted(1)
MIN MAX UNIT
Input voltage FB –0.3 3.6 V
SWN, SWP –0.3 10 V
VOUT, LDOIN, LDOOUT, LDOEN, LDOSENSE, PGOOD, LBO, VBAT, LBI, SKIPEN, EN –0.3 7 V
Maximum junction temperature TJ –40 150 °C
Storage temperature Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±750
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
Supply voltage at VBAT, VI 1.8 5.5 V
Operating ambient temperature range, TA –40 85 °C
Operating virtual junction temperature range, TJ –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) TPS61120, TPS61121, TPS61122 TPS61120 UNIT
PW (TSSOP) RSA (VQFN)
16 PINS 16 PINS
RθJA Junction-to-ambient thermal resistance 100.5 33.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 35.8 36.3 °C/W
RθJB Junction-to-board thermal resistance 45.4 11 °C/W
ψJT Junction-to-top characterization parameter 2.6 0.5 °C/W
ψJB Junction-to-board characterization parameter 44.8 11 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a 2.2 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

over recommended free-air temperature range and over recommended input voltage range (typical at an ambient temperature range of 25°C) (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
DC-DC STAGE
VI Input voltage range 1.8 5.5 V
VO Adjustable output voltage range (TPS61120) 2.5 5.5 V
Vref Reference
voltage
485 500 515 mV
f Oscillator
frequency
400 500 600 kHz
ISW Switch current limit VOUT= 3.3 V 1100 1300 1600 mA
Startup current limit 0.4 * ISW mA
SWN switch on resistance VOUT= 3.3 V 200 350
SWP switch on resistance VOUT= 3.3 V 250 500
Total accuracy (including line and load regulation) -3% ±3%
DC-DC
quiescent
current
into VBAT IO= 0 mA, VEN = VBAT = 1.8 V,
VOUT = 3.3 V, ENLDO = 0
10 25 µA
into VOUT IO = 0 mA, VEN = VBAT = 1.8 V,
VOUT = 3.3 V, ENLDO = 0
10 25 µA
DC-DC shutdown current VEN= 0 V 0.2 1 µA
LDO STAGE
VI(LDO) Input voltage range 1.8 7 V
VO(LDO) Adjustable output voltage range (TPS61120) 0.9 5.5 V
IO(max) Output current 200 320 mA
LDO short circuit current limit 500 mA
Minimum voltage drop IO= 200 mA 300 mV
Total accuracy (including line and load regulation) IO≥ 1 mA ±3%
Line regulation LDOIN change from 1.8 V to 2.6 V at 100 mA, LDOOUT = 1.5 V 0.6%
Load regulation Load change from 10% to 90%,
LDOIN = 3.3 V
0.6%
LDO quiescent current LDOIN = 7 V, VBAT = 1.8 V, EN = VBAT 20 30 µA
LDO shutdown current LDOEN = 0 V, LDOIN = 7 V 0.1 1 µA
CONTROL STAGE
VIL LBI voltage threshold VLBI voltage decreasing 490 500 510 mV
LBI input hysteresis 10 mV
LBI input current EN = VBAT or GND 0.01 0.1 µA
LBO output low voltage VO = 3.3 V, IOI = 100 µA 0.04 0.4 V
LBO output low current 100 µA
LBO output leakage current VLBO = 7 V 0.01 0.1 µA
VIL EN, SKIPEN input low voltage 0.2 × VBAT V
VIH EN, SKIPEN input high voltage 0.8 × VBAT V
VIL LDOEN input low voltage 0.2 × VLDOIN V
VIH LDOEN input high voltage 0.8 × VLDOIN V
EN, SKIPEN input current Clamped on GND or VBAT 0.01 0.1 µA
Power-Good threshold VO = 3.3 V 0.9*VO 0.92*VO 0.95*VO V
Power-Good delay 30 µs
Power-Good output low voltage VO = 3.3 V, IOI = 100 µA 0.04 0.4 V
Power-Good output low current 100 µA
Power-Good output leakage current VPG = 7 V 0.01 0.1 µA
Overtemperature protection 140 °C
Overtemperature hysteresis 20 °C

7.6 Typical Characteristics

Table 2. Table of Graphs

FIGURE
BOOST CONVERTER
Maximum output current vs Input voltage Figure 1, Figure 2
Efficiency vs Output current (TPS61120) (VO = 2.5 V, VI = 1.8 V) Figure 3
vs Output current (TPS61121) (VO = 3.3 V, VI = 1.8 V, 2.4 V) Figure 4
vs Output current (TPS61120) (VO = 5.0 V, VI = 2.4 V, 3.3 V) Figure 5
vs Input voltage (TPS61121) Figure 6
Output voltage vs Output current (TPS61121) Figure 7
No-load supply current into VBAT vs Input voltage (TPS61121) Figure 8
No-load supply current into VOUT vs Input voltage (TPS61121) Figure 9
LDO
Maximum output current vs Input voltage (VO = 2.5 V, 3.3 V) Figure 10
vs Input voltage (VO = 1.5 V, 1.8 V) Figure 11
Output voltage vs Output current (TPS61122) Figure 12
Dropout voltage vs Output current (TPS61121, TPS61122) Figure 13
Supply current into LDOIN vs LDOIN input voltage (TPS61121) Figure 14
PSRR vs Frequency (TPS61121) Figure 15
TPS61120 TPS61121 TPS61122 MOC_IV5_LVS427.gifFigure 1. TPS61120 Maximum Boost Converter Output Current vs Input Voltage
TPS61120 TPS61121 TPS61122 MOC_IV2_LVS427.gifFigure 2. TPS61120 Maximum Boost Converter Output Current vs Input Voltage
TPS61120 TPS61121 TPS61122 EFF_OC25_LVS427.gifFigure 3. TPS61120 Boost Converter Efficiency vs Output Current
TPS61120 TPS61121 TPS61122 EFF_OC5_LVS427.gifFigure 5. TPS61120 Boost Converter Efficiency vs Output Current
TPS61120 TPS61121 TPS61122 OV_OC_LVS427.gifFigure 7. TPS61121 Boost Converter Output Voltage vs Output Current
TPS61120 TPS61121 TPS61122 SC_VOUT_IV_LVS427.gifFigure 9. TPS61121 No-Load Supply Current Into VOUT vs Input Voltage
TPS61120 TPS61121 TPS61122 MX_LDO18_LVS427.gifFigure 11. TPS61120 Maximum LDO Output Current vs LDO Input Voltage
TPS61120 TPS61121 TPS61122 LDO_DPV_LVS427.gifFigure 13. LDO Dropout Voltage vs LDO Output Current
TPS61120 TPS61121 TPS61122 PSRR_FRQ_LVS427.gifFigure 15. TPS61121 PSRR vs Frequency
TPS61120 TPS61121 TPS61122 EFF_OC33_LVS427.gifFigure 4. TPS61121 Boost Converter Efficiency vs Output Current
TPS61120 TPS61121 TPS61122 EFF_IV_LVS427.gifFigure 6. TPS61121 Boost Converter Efficiency vs Input Voltage
TPS61120 TPS61121 TPS61122 SC_VBAT_IV_LVS427.gifFigure 8. TPS61121 No-Load Supply Current Into VBAT vs Input Voltage
TPS61120 TPS61121 TPS61122 MX_LDO33_LVS427.gifFigure 10. TPS61120 Maximum LDO Output Current vs LDO Input Voltage
TPS61120 TPS61121 TPS61122 LDO_OV_LVS427.gifFigure 12. TPS61122 LDO Output Voltage vs LDO Output Current
TPS61120 TPS61121 TPS61122 SC_LDOIN_LVS427.gifFigure 14. TPS61121 Supply Current Into LDOIN vs LDO Input Voltage