SLVSCZ5B July   2016  – October 2018 TPS61230A

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application
      2.      Efficiency
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Startup
      2. 7.3.2 Enable and Disable
      3. 7.3.3 Under-Voltage Lockout (UVLO)
      4. 7.3.4 Current Limit Operation
      5. 7.3.5 Over Voltage Protection
      6. 7.3.6 Load Disconnect
      7. 7.3.7 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 PWM Mode
      2. 7.4.2 PFM Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 TPS61230A 2.5-V to 4.5-V Input, 5-V Output Converter
        1. 8.2.1.1 TPS61230A 5-V Output Design Requirements
        2. 8.2.1.2 TPS61230A 5-V Detailed Design Procedure
          1. 8.2.1.2.1 Programming The Output Voltage
          2. 8.2.1.2.2 Inductor and Capacitor Selection
            1. 8.2.1.2.2.1 Inductor Selection
            2. 8.2.1.2.2.2 Output Capacitor Selection
            3. 8.2.1.2.2.3 Input Capacitor Selection
          3. 8.2.1.2.3 Loop Stability, Feed Forward Capacitor
        3. 8.2.1.3 TPS61230A 5-V Output Application Performance Plots
      2. 8.2.2 Systems Example - TPS61230A with Feed Forward Capacitor for Best Transient Response
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Inductor Selection

A boost converter requires two main passive components for storing energy during the conversion, an inductor and an output capacitor. It is advisable to select an inductor with a saturation current rating higher than the possible peak current flowing through the power FETs. The inductor peak current varies as a function of the load, the input and output voltages and is estimated using Equation 5.

Equation 5. TPS61230A EQ_Ipeak.gif

Where

η = Power conversion estimated efficiency

Selecting an inductor with the insufficient saturation performance can lead to the excessive peak current in the converter. This could eventually harm the device and reduce reliability. It's recommended to choose the saturation current for the inductor 20%~30% higher than the IL(PEAK), from Equation 5. The following inductors are recommended to be used in designs.

Table 5. List of Inductors

INDUCTANCE [µH] CURRENT RATING [A] DC RESISTANCE [mΩ] PART NUMBER MANUFACTURER
1.0 9.0 12 744 383 560 10 Wurth
1.0 5.1 10.8 XFL4020-102MEB Coilcraft