SLVSA99C May   2011  – April 2018 TPS61260 , TPS61261

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Parameter Measurement Information
    1. 7.1 Schematic and List of Components
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Controller Circuit
      2. 8.3.2 Synchronous Boost Operation
      3. 8.3.3 Power Save Mode
      4. 8.3.4 Device Enable
      5. 8.3.5 Softstart and Short Circuit Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Undervoltage Lockout
      2. 8.4.2 Output Overvoltage Protection
    5. 8.5 Programming
      1. 8.5.1 Programming the Output Voltage
      2. 8.5.2 Programming the Output Current
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 TPS61260 3.3-V Output Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Inductor Selection
          2. 9.2.1.2.2 Capacitor Selection
            1. 9.2.1.2.2.1 Input Capacitor
            2. 9.2.1.2.2.2 Output Capacitor
        3. 9.2.1.3 TPS61260 3.3-V Output Application Performance Plots
      2. 9.2.2 TPS61261 Application as LED Driver
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 TPS61261 Application as LED Driver Performance Plots
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Synchronous Boost Operation

The device uses 3 internal N-channel MOSFETs to maintain synchronous power conversion at all possible operating conditions. This enables the device to keep high efficiency over a wide input voltage and output power range. Using 2 rectifying switches also enables the device to control the output voltage and current during startup conditions when the input voltage is higher than the output voltage. During startup, the rectifying switch works in a linear mode until the output voltage is near the input voltage. Once in regulation, operating with the input voltage greater than the output voltage may cause either the output voltage or current to exceed its regulation value. Although this operating point is not recommended, the device will not be damaged by this as long as absolute maximum ratings are not violated.

As opposed to a standard boost converter, the implemented 3 switch topology enables the output to be disconnected from the input during device shutdown when disabled. Current does not flow from output to input or from input to output.