SLVSHB5A October   2024  – November 2024 TPS61287

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Enable and Start-up
      2. 6.3.2 Undervoltage Lockout (UVLO)
      3. 6.3.3 Programmable EN/UVLO
      4. 6.3.4 Switching Valley Current Limit
      5. 6.3.5 External Clock Synchronization
      6. 6.3.6 Stackable Multi-phase Operation
      7. 6.3.7 Device Functional Modes
        1. 6.3.7.1 Forced PWM Mode
        2. 6.3.7.2 Auto PFM Mode
      8. 6.3.8 Overvoltage Protection
      9. 6.3.9 Thermal Shutdown
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Setting Output Voltage
        2. 7.2.2.2 Inductor Selection
        3. 7.2.2.3 Bootstrap And VCC Capacitors Selection
        4. 7.2.2.4 MOSFET Selection
        5. 7.2.2.5 Input Capacitor Selection
        6. 7.2.2.6 Output Capacitor Selection
        7. 7.2.2.7 Loop Stability
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
        1. 7.4.2.1 Thermal Considerations
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Switching Valley Current Limit

The TPS61287 has an internal cycle-by-cycle current limit to prevent the inadvertent application of a large switching current. Current limit detection occurs during the off-time by sensing of the voltage drop across the integrated high-side MOSFET. The high-side MOSFET is turned off immediately as soon as the switch valley current triggers the limit threshold. The switch valley current limit can be set by a resistor from the ILIM pin to ground. The relationship between the valley current limit and the resistor is shown in Equation 3.

Equation 3. Ivalley(A)=400kRLIM(k)

where

  • RLIM is the resistance between the ILIM pin and the AGND pin.
  • Ivalley is the switch valley current limit.

For instance, the valley current limit is 20A if the RLIM is 20kΩ . ILIM pin can not be left floating or connected to VCC.