SLVS957E June   2009  – April 2016 TPS61300 , TPS61301 , TPS61305

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1. 3.1 Simplified Schematic
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1  Safety Timer Accuracy
      2. 8.3.2  LED Failure Modes and Overvoltage Protection
      3. 8.3.3  Start-Up Sequence
      4. 8.3.4  Power Good (Flash Ready)
      5. 8.3.5  LED Temperature Monitoring (TPS61305, TPS61305A, TPS61306)
      6. 8.3.6  Hot Die Detector
      7. 8.3.7  NRESET Input: Hardware Enable and Disable
      8. 8.3.8  ENDCL Input: DC Light Hardware Control
      9. 8.3.9  Flashlight Blanking (Tx-MASK)
      10. 8.3.10 Undervoltage Lockout
      11. 8.3.11 Storage Capacitor Active Cell Balancing
      12. 8.3.12 RED Light Privacy Indicator
      13. 8.3.13 White LED Privacy Indicator
      14. 8.3.14 Storage Capacitor, Precharge Voltage Calibration
      15. 8.3.15 Storage Capacitor, Adaptive Precharge Voltage
      16. 8.3.16 Serial Interface Description
    4. 8.4 Device Functional Modes
      1. 8.4.1  Down-Mode in Voltage Regulation Mode
      2. 8.4.2  LED High-Current Regulators, Unused Inputs
      3. 8.4.3  Power-Save Mode Operation, Efficiency
      4. 8.4.4  Mode of Operation: DC Light and Flashlight
      5. 8.4.5  Flash Strobe is Level Sensitive (STT = 0): LED Strobe Follows FLASH_SYNC Input
      6. 8.4.6  Flash Strobe Is Leading Edge Sensitive (STT = 1): One-Shot LED Strobe
      7. 8.4.7  Current Limit Operation
      8. 8.4.8  Hardware Voltage Mode Selection
      9. 8.4.9  Shutdown
      10. 8.4.10 Thermal Shutdown
      11. 8.4.11 F/S-Mode Protocol
      12. 8.4.12 HS-Mode Protocol
      13. 8.4.13 TPS6130xx I2C Update Sequence
    5. 8.5 Register Maps
      1. 8.5.1  Slave Address Byte
      2. 8.5.2  Register Address Byte
      3. 8.5.3  REGISTER1 (TPS61300, TPS61301)
      4. 8.5.4  REGISTER1 (TPS61305, TPS61305A, TPS61306)
      5. 8.5.5  REGISTER2 (TPS61300, TPS61301)
      6. 8.5.6  REGISTER2 (TPS61305, TPS61305A, TPS61306)
      7. 8.5.7  REGISTER3
      8. 8.5.8  REGISTER4
      9. 8.5.9  REGISTER5
      10. 8.5.10 REGISTER6 (TPS61300, TPS61301)
      11. 8.5.11 REGISTER6 (TPS61305, TPS61305A)
      12. 8.5.12 REGISTER7
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 4100-mA Two White High-Power LED Flashlight Featuring Storage Capacitor
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Inductor Selection
          2. 9.2.1.2.2 Input Capacitor
          3. 9.2.1.2.3 Output Capacitor
          4. 9.2.1.2.4 NTC Selection (TPS61305, TPS61305A, TPS61306)
          5. 9.2.1.2.5 Checking Loop Stability
        3. 9.2.1.3 Application Curves
      2. 9.2.2 TPS61300 Typical Application
        1. 9.2.2.1 Design Requirement
        2. 9.2.2.2 Application Curves
    3. 9.3 System Examples
      1. 9.3.1 2x 600-mA High-Power White LED Solution Featuring Privacy Indicator
      2. 9.3.2 White LED Flashlight Driver and Audio Amplifier Power Supply Operating Simultaneously
      3. 9.3.3 White LED Flashlight Driver and Audio Amplifier Power Supply Operating Simultaneously
      4. 9.3.4 White LED Flashlight Driver and Audio Amplifier Power Supply Exclusive Operation
      5. 9.3.5 White LED Flashlight Driver and Auxiliary Lighting Zone Power Supply
      6. 9.3.6 TPS61300, Typical Application
      7. 9.3.7 TPS61301, Typical Application
      8. 9.3.8 TPS61305 Typical Application
      9. 9.3.9 TPS61306, Typical Application
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Community Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Voltage range(2) AVIN, VOUT, SW, LED1, LED2, LED3, SCL, SDA, FLASH_SYNC, ENDCL, NRESET, ENVM, GPIO/PG, HC_SEL, Tx-MASK, TS, BAL –0.3 7 V
Current on GPIO/PG ±25 mA
Power dissipation Internally limited
Operating ambient temperature(3), TA –40 85 °C
Maxium operating junction temperature, TJ(MAX) 150 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to network ground terminal.
(3) In applications where high power dissipation or poor package thermal resistance is present, the maximum ambient temperature may have to be derated. Maximum ambient temperature [TA(MAX)] is dependent on the maximum operating junction temperature [TJ(MAX)], the maximum power dissipation of the device in the application [PD(MAX)], and the junction-to-ambient thermal resistance of the part and package in the application (θJA), as given by the following equation: TA(MAX) = TJ(MAX) – (θJA × PD(MAX))

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
TJ Operating junction temperature –40 125 °C

7.4 Thermal Information

THERMAL METRIC(1) TPS6130xx UNIT
YFF (DSBGA)
20 PINS
RθJA Junction-to-ambient thermal resistance 70.9 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 0.4 °C/W
RθJB Junction-to-board thermal resistance 11.4 °C/W
ψJT Junction-to-top characterization parameter 1.9 °C/W
ψJB Junction-to-board characterization parameter 11.2 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Unless otherwise noted the specification applies for VIN = 3.6 V over an operating junction temperature TJ = –40°C to 125°C; Circuit of (unless otherwise noted). Typical values are for TJ = 25°C.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SUPPLY CURRENT
VIN Input voltage range 2.5 5.5 V
IQ Operating quiescent current into AVIN IOUT = 0 mA, device not switching
–40°C ≤ TJ ≤ 85°C
590 700 μA
IOUT(DC) = 0 mA, PWM operation
VOUT = 4.95 V, voltage regulation mode
11.3 mA
ISD Shutdown current HC_SEL = 0, –40°C ≤ TJ ≤ 85°C 1 5 μA
ISTBY Standby current HC_SEL = 1, storage capacitor balanced
–40°C ≤ TJ ≤ 85°C
2 12 μA
Precharge current VOUT = 2.3 V, 2.5 V ≤ VIN ≤ 5.5 V 150 mA
Precharge hysteresis
(referred to VOUT)
40 75 mV
VUVLO Undervoltage lockout threshold
(analog circuitry)
VIN falling 2.3 2.4 V
OUTPUT
VOUT Output voltage range Current regulation mode VIN 5.5 V
Voltage regulation mode 3.825 5.7
Internal feedback voltage accuracy 2.5 V ≤ VIN ≤ 4.8 V, –20°C ≤ TJ ≤ 125°C
Boost mode, PWM voltage regulation
–2% 2%
0.85 Power-save mode ripple voltage IOUT = 10 mA 0.015 × VOUT VP–P
OVP Output overvoltage protection VOUT rising, 0000 ≤ OV[3:0] ≤ 0100 4.5 4.65 4.8 V
VOUT rising, 0101 ≤ OV[3:0] ≤ 1111 5.8 6 6.2
Output overvoltage protection hysteresis VOUT falling, 0101 ≤ OV[3:0] ≤ 1111 0.15
POWER SWITCH
rDS(on) Switch MOSFET ON-resistance VOUT = VGS = 3.6 V 90
Rectifier MOSFET ON-resistance VOUT = VGS = 3.6 V 135
Ilkg(SW) Leakage into SW VOUT = 0 V, SW = 3.6 V, –40°C ≤ TJ ≤ 85°C 0.3 4 μA
Ilim Rectifier valley current limit
(open loop)
VOUT = 4.95 V, HC_SEL = 0,
–20°C ≤ TJ ≤ 85°C
PWM operation, relative to selected ILIM
–15% 15%
OSCILLATOR
fOSC Oscillator frequency 1.92 MHz
fACC Oscillator frequency –10% 7%
THERMAL SHUTDOWN, HOT DIE DETECTOR
Thermal shutdown(1) 140 160 °C
Thermal shutdown hysteresis(1) 20 °C
Hot die detector accuracy(1) –8 8 °C
LED CURRENT REGULATOR
LED1/3 current accuracy(1) HC_SEL = 0 0.4 V ≤ VLED1/3 ≤ 2 V
00 ≤ DCLC13[1:0] ≤ 11, TJ = 85°C
–10% 10%
0.4 V ≤ VLED1/3 ≤ 2 V
00 ≤ FC13[1:0] ≤ 11, TJ = 85°C
–7.5% 7.5%
LED2 current accuracy(1) 0.4 V ≤ VLED2 ≤ 2 V
000 ≤ DCLC2[2:0] ≤ 111, TJ = 85°C
–10% 10%
0.4 V ≤ VLED2 ≤ 2 V
000 ≤ FC2[2:0] ≤ 111, TJ = 85°C
–7.5% 7.5%
LED1/3 current accuracy(1) HC_SEL = 1 0.4 V ≤ VLED1/3 ≤ 2 V
00 ≤ DCLC13[1:0] ≤ 11, TJ = 85°C
–10% 10%
0.4 V ≤ VLED1/3 ≤ 2 V
00 ≤ FC13[1:0] ≤ 11, TJ = 85°C
–10% 10%
LED2 current accuracy(1) 0.4 V ≤ VLED2 ≤ 2 V
000 ≤ DCLC2[2:0] ≤ 111, TJ = 85°C
–10% 10%
0.4 V ≤ VLED1/3 ≤ 2 V
000 ≤ FC2[2:0] ≤ 111, TJ = 85°C
–10% 10%
LED1/3 current matching(1) –10% 10%
LED1/2/3 current temperature coefficient 0.05 %/°C
INDLED current accuracy 1.5 V ≤ (VIN – VINDLED) ≤ 2.5 V
2.6 mA ≤ IINDLED ≤ 7.9 mA, TJ = 25°C
–20% 20%
INDLED current temperature coefficient 0.04 %/°C
VDO LED1/2/3 sense voltage ILED1–3 = full-scale current, HC_SEL = 0 400 mV
LED1/2/3 sense voltage ILED1–3 = full-scale current, HC_SEL = 1 400 450
VOUT dropout voltage IOUT = –7.5 mA, device not switching 220
LED1/2/3 input leakage current VLED1/2/3 = VOUT = 5 V, –40°C ≤ TJ ≤ 85°C 0.1 4 μA
INDLED input leakage current VINDLED = 0 V, –40°C ≤ TJ ≤ 85°C 0.1 1 μA
STORAGE CAPACITOR ACTIVE CELL BALANCING
Active cell balancing circuitry quiescent current into VOUT HC_SEL = 1, storage capacitor balanced
–40°C ≤ TJ ≤ 85°C
1.7 6 μA
Active cell balancing accuracy (VOUT – BAL) vs BAL voltage difference
Storage capacitor balanced HC_SEL = 1
VOUT = 5.7 V
–100 100 mV
BAL output drive capability VOUT = 4.95 V, Sink and source current ±10 ±15 mA
Active discharge resistor HC_SEL = 0, device in shutdown mode
VOUT to BAL and BAL to GND
0.85 1.5
LED TEMPERATURE MONITORING (TPS61305, TPS61035A)
IO(TS) Temperature Sense Current Source Thermistor bias current 23.8 μA
TS Resistance (Warning Temperature) LEDWARN bit = 1, TJ ≥ 25°C 39 44.5 50
TS Resistance (Hot Temperature) LEDHOT bit = 1, TJ ≥ 25°C 12.5 14.5 16.5
SDA, SCL, GPIO/PG, ENVM, Tx-MASK, ENDCL, NRESET, FLASH_SYNC, HC_SEL
V(IH) High-level input voltage 1.2 V
V(IL) Low-level input voltage 0.4 V
V(OL) Low-level output voltage (SDA) IOL = 8 mA 0.3 V
Low-level output voltage (GPIO) DIR = 1, IOL = 5 mA 0.3
V(OH) High-level output voltage (GPIO) DIR = 1, GPIOTYPE = 0, IOH = 8 mA VIN – 0.4 V
I(LKG) Logic input leakage current Input connected to VIN or GND
–40°C ≤ TJ ≤ 85°C
0.01 0.1 μA
RPD ENVM pull-down resistance ENVM ≤ 0.4 V 350
ENDCL, NRESET pull-down resistance ENDCL, NRESET ≤ 0.4 V 350
FLASH_SYNC pull-down resistance FLASH_SYNC ≤ 0.4 V 350
Tx-MASK pull-down resistance Tx-MASK ≤ 0.4 V 350
HC_SEL pull-down resistance HC_SEL ≤ 0.4 V 350
C(IN) SDA input capacitance SDA = VIN or GND 9 pF
SCL input capacitance SCL = VIN or GND 4
GPIO/PG input capacitance DIR = 0, GPIO/PG = VIN or GND 9
ENVM input capacitance ENVM = VIN or GND 4
ENDCL input capacitance ENDCL = VIN or GND 3
HC_SEL input capacitance HC_SEL = VIN or GND 3.5
Tx-MASK input capacitance Tx-MASK = VIN or GND 4
FLASH_SYNC input capacitance FLASH_SYNC = VIN or GND 3
TIMING
tNRESET Reset pulse width 10 μs
Start-up time From shutdown into DC light mode
HC_SEL = 0, ILED = 100 mA
1.4 ms
From shutdown into voltage mode through ENVM, HC_SEL = 0, IOUT = 0 mA 550 μs
LED current settling time(2) triggered by a rising edge on FLASH_SYNC MODE_CTRL[1:0] = 10, HC_SEL = 0
ILED2 = from 0 mA to 800 mA
400 μs
MODE_CTRL[1:0] = 10, HC_SEL = 1
ILED2 = from 0 mA to 1800 mA
16
LED current settling time(2) triggered by Tx-MASK MODE_CTRL[1:0] = 10, HC_SEL = 0
ILED2 = from 800 mA to 350 mA
15 μs
(1) Verified by characterization. Not tested in production.
(2) Settling time to ±15% of the target value.

7.6 Timing Requirements

PARAMETER TEST CONDITIONS MIN MAX UNIT
f(SCL) SCL clock frequency Standard mode 100 kHz
Fast mode 400
High-speed mode (write operation),
CB – 100 pF maximum
3.4 MHz
High-speed mode (read operation),
CB – 100 pF maximum
3.4
High-speed mode (write operation),
CB – 400 pF maximum
1.7
High-speed mode (read operation),
CB – 400 pF maximum
1.7
tBUF Bus free time between a STOP and START condition Standard mode 4.7 µs
Fast mode 1.3
tHD, tSTA Hold time (repeated) START condition Standard mode 4 µs
Fast mode 600 ns
High-speed mode 160
tLOW LOW period of the SCL clock Standard mode 4.7 µs
Fast mode 1.3
High-speed mode, CB – 100 pF maximum 160 ns
High-speed mode, CB – 400 pF maximum 320
tHIGH HIGH period of the SCL clock Standard mode 4 µs
Fast mode 600 ns
High-speed mode, CB – 100 pF maximum 60
High-speed mode, CB – 400 pF maximum 120
tSU, tSTA Setup time for a repeated START condition Standard mode 4.7 µs
Fast mode 600 ns
High-speed mode 160
tSU, tDAT Data setup time Standard mode 250 ns
Fast mode 100
High-speed mode 10
tHD, tDAT Data hold time Standard mode 0 3.45 µs
Fast mode 0 0.9
High-speed mode, CB – 100 pF maximum 0 70 ns
High-speed mode, CB – 400 pF maximum 0 150
tRCL Rise time of SCL signal Standard mode 20 + 0.1 CB 1000 ns
Fast mode 20 + 0.1 CB 300
High-speed mode, CB – 100 pF maximum 10 40
High-speed mode, CB – 400 pF maximum 20 80
tRCL1 Rise time of SCL signal after a repeated START condition and after an acknowledge BIT Standard mode 20 + 0.1 CB 1000 ns
Fast mode 20 + 0.1 CB 300
High-speed mode, CB – 100 pF maximum 10 80
High-speed mode, CB – 400 pF maximum 20 160
tFCL Fall time of SCL signal Standard mode 20 + 0.1 CB 300 ns
Fast mode 20 + 0.1 CB 300
High-speed mode, CB – 100 pF maximum 10 40
High-speed mode, CB – 400 pF maximum 20 80
tRDA Rise time of SDA signal Standard mode 20 + 0.1 CB 1000 ns
Fast mode 20 + 0.1 CB 300
High-speed mode, CB – 100 pF maximum 10 80
High-speed mode, CB – 400 pF maximum 20 160
tFDA Fall time of SDA signal Standard mode 20 + 0.1 CB 300 ns
Fast mode 20 + 0.1 CB 300
High-speed mode, CB – 100 pF maximum 10 80
High-speed mode, CB – 400 pF maximum 20 160
tSU, tSTO Setup time for STOP condition Standard mode 4 µs
Fast mode 600 ns
High-speed mode 160
CB Capacitive load for SDA and SCL 400 pF
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 fs_timing_lvs957.gif Figure 1. Serial Interface Timing for F/S-Mode
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 hs_timing_lvs957.gif Figure 2. Serial Interface Timing for HS-Mode

7.7 Typical Characteristics

TABLE OF GRAPHS FIGURE NO.
LED Power Efficiency vs Input Voltage Figure 3, Figure 4
DC Input Current vs Input Voltage Figure 5
LED Current vs LED Pin Headroom Voltage Figure 6, Figure 7, Figure 8
LED Current vs LED Current Digital Code Figure 9, Figure 10, Figure 11, Figure 12
INDLED Current vs LED Pin Headroom Voltage Figure 13
Voltage Mode Efficiency vs Output Current Figure 14, Figure 15
DC Output Voltage vs Output Current Figure 16, Figure 17
Maximum Output Current vs Input Voltage Figure 18
DC preCharge Current vs Differential Input-Output Voltage Figure 19, Figure 20
Valley Current Limit Figure 21, Figure 22
Balancing Current vs Balance Pin Voltage Figure 23
Supply Current vs Input Voltage Figure 24
Standby Current vs Ambient Temperature Figure 25
Temperature Detection Threshold Figure 26, Figure 27
Junction Temperature vs Port Voltage Figure 28
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc1_lvs957.gif Figure 3. LED Power Efficiency vs Input Voltage
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc3_lvs957.gif Figure 5. DC Input Current vs Input Voltage
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc5_lvs957.gif Figure 7. LED1+LED3 Current vs
LED1+LED3 Pin Headroom Voltage (HC_SEL = 0)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc7_lvs957.gif Figure 9. LED2 Current vs
LED2 Current Digital Code (HC_SEL = 0)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc9_lvs957.gif Figure 11. LED2 Current vs
LED2 Current Digital Code (HC_SEL = 0)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc11_lvs957.gif Figure 13. INDLED Current vs
INDLED Pin Headroom Voltage
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc13_lvs957.gif Figure 15. Efficiency vs Output Current
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc15_lvs957.gif Figure 17. DC Output Voltage vs Load Current
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc17_lvs957.gif Figure 19. DC Precharge Current vs Differential InputOutput Voltage (HC_SEL = 1)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc19_lvs957.gif Figure 21. Valley Current Limit (HC_SEL = 1)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc21_lvs957.gif Figure 23. Balancing Current vs Balance Pin Voltage
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc23_lvs957.gif Figure 25. Standby Current vs Ambient Temperature (HC_SEL = 1)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc25_lvs957.gif Figure 27. Temperature Detection Threshold
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc2_lvs957.gif Figure 4. LED Power Efficiency vs Input Voltage
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc4_lvs957.gif Figure 6. LED2 Current vs LED2 Pin Headroom Voltage
(HC_SEL = 0)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc6_lvs957.gif Figure 8. LED2 Current vs
LED2 Pin Headroom Voltage (HC_SEL = 1)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc8_lvs957.gif Figure 10. LED1, LED3 Current vs
LED1, LED3 Current Digital Code (HC_SEL = 0)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc10_lvs957.gif Figure 12. LED1, LED3 Current vs
LED1, LED3 Current Digital Code (HC_SEL = 0)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc12_lvs957.gif Figure 14. Efficiency vs Output Current
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc14_lvs957.gif Figure 16. DC Output Voltage vs Load Current
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc16_lvs957.gif Figure 18. Maximum Output Current vs Input Voltage
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc18_lvs957.gif Figure 20. DC Precharge Current vs Differential InputOutput Voltage (HC_SEL = 1)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc20_lvs957.gif Figure 22. Valley Current Limit (HC_SEL = 1)
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc22_lvs957.gif Figure 24. Supply Current vs Input Voltage
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc24_lvs957.gif Figure 26. Temperature Detection Threshold
TPS61300 TPS61301 TPS61305 TPS61305A TPS61306 tc26_lvs957.gif Figure 28. Junction Temperature vs Port Voltage