SLVS893F December   2008  – May 2019 TPS61500

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application Circuit
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Switching Frequency
      2. 7.3.2 Soft Start
      3. 7.3.3 Enable and Thermal Shutdown
      4. 7.3.4 Undervoltage Lockout (UVLO)
      5. 7.3.5 Overvoltage Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 PWM Dimming Method
      2. 7.4.2 Analog Dimming Method
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Analog Dimming Method
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Programming the Overvoltage Protection
          2. 8.2.1.2.2 Programming the LED Current
          3. 8.2.1.2.3 Implementing Dimming
          4. 8.2.1.2.4 Computing the Maximum Output Current
          5. 8.2.1.2.5 Selecting the Inductor
          6. 8.2.1.2.6 Selecting the Schottky Diode
          7. 8.2.1.2.7 Selecting the Compensation Capacitor and Resistor
          8. 8.2.1.2.8 Selecting the Input and Output Capacitor
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Pure PWM Dimming Method
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Receiving Notification of Documentation Updates
      3. 11.1.3 Community Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

PWM Dimming Method

LED brightness is controlled by peak LED current and duty cycle of external PWM signal. See Figure 11, Figure 12, and Figure 13, for the PWM dimming operating and linearity. Additional external switch FETs connect/disconnect LED string during PWM on/off period, shown in Figure 7. Simultaneously, the TPS61500 samples and holds the COMP voltage to speed up LED current regulation during the on period. Because the device and the external switch FETs must have several hundred microseconds to regulate the LED current, the frequency and minimum duty cycle of the PWM signal are application dependent. For example, 2% is the minimum duty cycle for a 200-Hz PWM signal.

The PWM dimming method offers better control of color because current through LED is kept constant each cycle.