SLVSG98B February   2023  – March 2024 TPS628301 , TPS628302 , TPS628303 , TPS628304

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information Discrete
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Pulse Width Modulation (PWM) Operation
      2. 7.3.2 Power Save Mode (PSM) Operation
      3. 7.3.3 Start-Up and Soft Start
      4. 7.3.4 Switch Cycle-by-Cycle Current Limit
      5. 7.3.5 Short-Circuit Protection
      6. 7.3.6 Undervoltage Lockout
      7. 7.3.7 Thermal Shutdown
      8. 7.3.8 Optimized EMI Performance
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable, Disable, and Output Discharge
      2. 7.4.2 Minimum Duty Cycle and 100% Mode Operation
      3. 7.4.3 Power Good
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Setting The Output Voltage
        3. 8.2.2.3 Inductor Selection
        4. 8.2.2.4 Output Capacitor Selection
        5. 8.2.2.5 Input Capacitor Selection
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
        1. 8.4.2.1 Thermal Considerations
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Inductor Selection

The main parameter for the inductor selection is the inductor value and then the saturation current of the inductor. To calculate the maximum inductor current under static load conditions, Equation 5 and Equation 6 are given.

Equation 5. IL,MAX=IOUT,MAX+IL2
Equation 6. IL=VOUT×1-VOUTVINL×fSW

where:

  • IOUT,MAX = Maximum output current
  • ΔIL = Inductor current ripple
  • fSW = Switching frequency
  • L = Inductor value

TI recommends to choose a saturation current for the inductor that is approximately 20% to 30% higher than IL,MAX. In addition, DC resistance and size must also be taken into account when selecting an appropriate inductor. Finally, for better transient response performance, TI recommends a smaller inductance value. Table 8-7 lists recommended inductors.

Table 8-3 List of Recommended Inductors
INDUCTANCE [µH]CURRENT RATING [A]DIMENSIONS [mm]MAX. DC RESISTANCE [mΩ]MFR PART NUMBER(1)
0.47 4.4 4.0 × 4.0 × 1.6 7.5 XGL4015-471ME, Coilcraft
4.8 2.0 × 1.6 × 1.0 22 HTEN20161T-R47MDR, Cyntec
4.8 2.0 × 1.6 × 1.0 22 CIGT201610EHR47MNE, Samsung
5.1 2.0 × 1.6 × 1.0 34 TFM201610ALM-R47MTAA, TDK
0.24 4.8 2.0 × 1.25 × 0.8 17 LSCNE2012HKTR24MD, Taiyo Yuden
4.7 2.0 × 1.6 × 1.0 19 CIGT201610LHR24MNE, Samsung
4.72.0 × 1.6 × 1.020DFE201610E-R24M, MuRata
3.62.0 × 1.6 × 0.823CIGT201608LMR24MNE, Samsung