SLVSGC5B January   2023  – May 2024 TPS62870 , TPS62871 , TPS62872 , TPS62873

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Description (continued)
  6. Device Options
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings_Catalog
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 I2C Interface Timing Characteristics
    7. 7.7 Timing Requirements
    8. 7.8 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Fixed-Frequency DCS Control Topology
      2. 8.3.2  Forced PWM and Power Save Modes
      3. 8.3.3  Precise Enable
      4. 8.3.4  Start-Up
      5. 8.3.5  Switching Frequency Selection
      6. 8.3.6  Output Voltage Setting
        1. 8.3.6.1 Output Voltage Range
        2. 8.3.6.2 Output Voltage Setpoint
        3. 8.3.6.3 Non-Default Output Voltage Setpoint
        4. 8.3.6.4 Dynamic Voltage Scaling
      7. 8.3.7  Compensation (COMP)
      8. 8.3.8  Mode Selection and Clock Synchronization (MODE/SYNC)
      9. 8.3.9  Spread Spectrum Clocking (SSC)
      10. 8.3.10 Output Discharge
      11. 8.3.11 Undervoltage Lockout (UVLO)
      12. 8.3.12 Overvoltage Lockout (OVLO)
      13. 8.3.13 Overcurrent Protection
        1. 8.3.13.1 Cycle-by-Cycle Current Limiting
        2. 8.3.13.2 Hiccup Mode
        3. 8.3.13.3 Current Limit Mode
      14. 8.3.14 Power Good (PG)
        1. 8.3.14.1 Standalone or Primary Device Behavior
        2. 8.3.14.2 Secondary Device Behavior
      15. 8.3.15 Remote Sense
      16. 8.3.16 Thermal Warning and Shutdown
      17. 8.3.17 Stacked Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-On Reset
      2. 8.4.2 Undervoltage Lockout
      3. 8.4.3 Standby
      4. 8.4.4 On
    5. 8.5 Programming
      1. 8.5.1 Serial Interface Description
      2. 8.5.2 Standard, Fast, Fast Mode Plus Protocol
      3. 8.5.3 I2C Update Sequence
      4. 8.5.4 I2C Register Reset
  10. Register Map
  11. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Selecting the Inductor
        2. 10.2.2.2 Selecting the Input Capacitors
        3. 10.2.2.3 Selecting the Compensation Resistor
        4. 10.2.2.4 Selecting the Output Capacitors
        5. 10.2.2.5 Selecting the Compensation Capacitor, CC
        6. 10.2.2.6 Selecting the Compensation Capacitor, CC2
      3. 10.2.3 Application Curves
    3. 10.3 Best Design Practices
    4. 10.4 Power Supply Recommendations
    5. 10.5 Layout
      1. 10.5.1 Layout Guidelines
      2. 10.5.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TPS6287x devices are synchronous step-down (buck) DC/DC converters. These devices use an enhanced DCS control topology to achieve fast transient response while switching with a fixed frequency. Together, with the low output voltage ripple, high DC accuracy, and differential remote sensing, these devices are ideal for supplying the cores of modern high-performance processors.

The family of devices includes 6A, 9A, 12A, and 15A devices. To further increase the output current capability, the user can combine multiple devices in a “stack”. For example, a stack of two TPS62873 devices have a current capability of 30A. Each device of a stack must have the same current rating to avoid that one device enters current limit too early.

For each current rating, there are full-featured devices with an I2C interface and limited-featured devices without an I2C interface (see the Device Options). The user can use a device variant without I2C in exactly the same way as a device variant with I2C, except that:

  • The user must connect the unused SCL and SDA pins to GND.
  • The user must be aware of the (fixed) factory settings for parameters and functions that are programmable in the I2C device variants.