SLVSFS7A March   2021  – January 2024 TPS62901

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Mode Selection and Device Configuration MODE/S-CONF
      2. 6.3.2 Adjustable VO Operation (External Voltage Divider)
      3. 6.3.3 Setable VO Operation (VSET and Internal Voltage Divider)
      4. 6.3.4 Soft Start / Tracking (SS/TR)
      5. 6.3.5 Smart Enable with Precise Threshold
      6. 6.3.6 Power Good (PG)
      7. 6.3.7 Undervoltage Lockout (UVLO)
      8. 6.3.8 Current Limit And Short-Circuit Protection
      9. 6.3.9 Thermal Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 Pulse Width Modulation (PWM) Operation
      2. 6.4.2 AEE (Automatic Efficiency Enhancement)
      3. 6.4.3 Power Save Mode Operation (Auto PFM/PWM)
      4. 6.4.4 100% Duty-Cycle Operation
      5. 6.4.5 Output Discharge Function
      6. 6.4.6 Starting into a Prebiased Load
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application with Adjustable Output Voltage
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Custom Design With WEBENCH® Tools
        2. 7.2.2.2 Programming the Output Voltage
        3. 7.2.2.3 External Component Selection
        4. 7.2.2.4 Inductor Selection
        5. 7.2.2.5 Capacitor Selection
          1. 7.2.2.5.1 Output Capacitor
          2. 7.2.2.5.2 Input Capacitor
          3. 7.2.2.5.3 Soft-Start Capacitor
        6. 7.2.2.6 Tracking Function
        7. 7.2.2.7 Output Filter and Loop Stability
      3. 7.2.3 Application Curves
      4. 7.2.4 Typical Application with Setable VO using VSET
        1. 7.2.4.1 Design Requirements
        2. 7.2.4.2 Detailed Design Procedure
        3. 7.2.4.3 Application Curves
    3. 7.3 System Examples
      1. 7.3.1 LED Power Supply
      2. 7.3.2 Powering Multiple Loads
      3. 7.3.3 Voltage Tracking
    4. 7.4 Power Supply Recommendations
    5. 7.5 Layout
      1. 7.5.1 Layout Guidelines
      2. 7.5.2 Layout Example
        1. 7.5.2.1 Thermal Considerations
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Custom Design With WEBENCH® Tools
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
  • RPJ|9
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Soft Start / Tracking (SS/TR)

With the SS/TR pin, it is possible to adjust the soft start behavior and track an external voltage. See Section 7.2.2.6 for operation details.

The internal soft-start circuitry controls the output voltage slope during start-up. This avoids excessive inrush current and ensures a controlled output voltage rise time. It also prevents unwanted voltage drops from high impedance power sources or batteries. When EN is set high to start operation, the device starts switching after a delay, then the internal reference, and hence VO, rises with a slope controlled by an external capacitor connected to the SS/TR pin.

Leaving the SS/TR pin unconnected provides the fastest start-up, limited internally (the pin must not be pulled LOW externally).

If the device is set to shut down (EN = GND), undervoltage lockout, or thermal shutdown, an internal resistor pulls the SS/TR pin down to ensure a proper low level. Returning from those states causes a new start-up sequence as set by the SS/TR connection.

A voltage supplied to SS/TR can be used to track a master voltage. The output voltage follows this voltage up and down in forced PWM mode. In PFM mode, the output voltage decreases based on the load current.