SLVSGV5A October   2022  – March 2023 TPS62993-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Mode Selection and Device Configuration MODE/S-CONF
      2. 8.3.2  Adjustable VO Operation (External Voltage Divider)
      3. 8.3.3  Selectable VO Operation (VSET and Internal Voltage Divider)
      4. 8.3.4  Soft Start and Tracking (SS/TR)
        1. 8.3.4.1 Tracking Function
      5. 8.3.5  Smart Enable with Precise Threshold
      6. 8.3.6  Power Good (PG)
      7. 8.3.7  Output Discharge Function
      8. 8.3.8  Undervoltage Lockout (UVLO)
      9. 8.3.9  Current Limit and Short-Circuit Protection
      10. 8.3.10 High Temperature Specifications
      11. 8.3.11 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Forced Pulse Width Modulation (FPWM) Operation
      2. 8.4.2 Power Save Mode Operation (Auto PFM and PWM)
      3. 8.4.3 AEE (Automatic Efficiency Enhancement)
      4. 8.4.4 100% Duty-Cycle Operation
      5. 8.4.5 Starting into a Prebiased Load
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application with Adjustable Output Voltage
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Custom Design With WEBENCH® Tools
        2. 9.2.2.2 Programming the Output Voltage
        3. 9.2.2.3 External Component Selection
          1. 9.2.2.3.1 Output Filter and Loop Stability
          2. 9.2.2.3.2 Inductor Selection
          3. 9.2.2.3.3 Capacitor Selection
            1. 9.2.2.3.3.1 Output Capacitor
            2. 9.2.2.3.3.2 Input Capacitor
            3. 9.2.2.3.3.3 Soft-Start Capacitor
      3. 9.2.3 Application Curves
        1. 9.2.3.1 Application Curves Vout = 1.8 V
        2. 9.2.3.2 Application Curves Vout = 1.2 V
        3. 9.2.3.3 Application Curves Vout = 0.6 V
    3. 9.3 Typical Application with Selectable VOUT using VSET
      1. 9.3.1 Design Requirements
      2. 9.3.2 Detailed Design Procedure
        1. 9.3.2.1 Programming the Output Voltage
      3. 9.3.3 Application Curves
        1. 9.3.3.1 Application Curves Vout = 5 V
        2. 9.3.3.2 Application Curves Vout = 3.3 V
    4. 9.4 System Examples
      1. 9.4.1 LED Power Supply
      2. 9.4.2 Powering Multiple Loads
      3. 9.4.3 Voltage Tracking
      4. 9.4.4 Inverting Buck-Boost (IBB)
    5. 9.5 Power Supply Recommendations
    6. 9.6 Layout
      1. 9.6.1 Layout Guidelines
      2. 9.6.2 Layout Example
      3. 9.6.3 Thermal Considerations
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Development Support
        1. 10.1.2.1 Custom Design With WEBENCH® Tools
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Forced Pulse Width Modulation (FPWM) Operation

The TPS62993-Q1 has two operating modes: Forced PWM (FPWM) mode discussed in this section and auto PFM and PWM as discussed in Section 8.4.2.

With the MODE/S-CONF pin configured for FPWM mode, the TPS62993-Q1 operates with pulse width modulation in continuous conduction mode (CCM) with a nominal switching frequency of either 2.5 MHz or 1.0 MHz. The frequency variation in PWM is controlled and depends on VIN, VOUT, and the inductance. The on time in forced PWM mode is given by Equation 4:

Equation 4. T O N = V O U T V I N × 1 f S W

For very small output voltages, a minimum on time of approximately 30 ns is kept to limit switching losses. The operating frequency is thereby reduced from its nominal value, which keeps efficiency high.