SLVSEK4C July   2019  – February 2020 TPS63810 , TPS63811

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Efficiency versus Output Current
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     BGA Package (YFF) Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Control Scheme
        1. 8.3.1.1 Buck Operation
        2. 8.3.1.2 Boost Operation
        3. 8.3.1.3 Buck-Boost Operation
      2. 8.3.2  Control Scheme
      3. 8.3.3  Power-Save Mode Operation (PSM)
      4. 8.3.4  Forced-PWM Operation (FPWM)
      5. 8.3.5  Ramp-PWM Operation (RPWM)
      6. 8.3.6  Device Enable (EN)
      7. 8.3.7  Undervoltage Lockout (UVLO)
      8. 8.3.8  Soft Start
      9. 8.3.9  Output Voltage Control
        1. 8.3.9.1 Dynamic Voltage Scaling
      10. 8.3.10 Protection Functions
        1. 8.3.10.1 Input Voltage Protection (IVP)
        2. 8.3.10.2 Current Limit Mode and Overcurrent Protection
        3. 8.3.10.3 Thermal Shutdown
      11. 8.3.11 Power Good
      12. 8.3.12 Load Disconnect
      13. 8.3.13 Output Discharge
    4. 8.4 Device Functional Modes
    5. 8.5 Programming
      1. 8.5.1 Serial Interface Description
      2. 8.5.2 Standard-, Fast-, and Fast-Mode Plus Protocol
      3. 8.5.3 I2C Update Sequence
    6. 8.6 Register Map
      1. 8.6.1 Register Description
        1. 8.6.1.1 Register Map
        2. 8.6.1.2 Register CONTROL (Slave address: 0b1110101; Register address: 0x01; Default: 0x00 or 0x20)
          1. Table 3. Register CONTROL Field Descriptions
        3. 8.6.1.3 Register STATUS (Slave address: 0b1110101; Register address: 0x02; Default: 0x00)
          1. Table 4. Register STATUS Field Descriptions
        4. 8.6.1.4 Register DEVID (Slave address: 0b1110101; Register address: 0x03; Default: 0x04)
          1. Table 5. Register DEVID Field Descriptions
        5. 8.6.1.5 Register VOUT1 (Slave address: 0b1110101; Register address: 0x04; Default: 0x3C)
          1. Table 6. Register VOUT1 Field Descriptions
        6. 8.6.1.6 Register VOUT2 (Slave address: 0b1110101; Register address: 0x05; Default: 0x42)
          1. Table 7. Register VOUT2 Field Descriptions
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 1.8-V to 5.2-V Output Smartphone Power Supply
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Input Capacitor Selection
          2. 9.2.1.2.2 Inductor Selection
          3. 9.2.1.2.3 Output Capacitor Selection
          4. 9.2.1.2.4 I2C Pullup Resistor Selection
        3. 9.2.1.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 Receiving Notification of Documentation Updates
    5. 12.5 Support Resources
    6. 12.6 Trademarks
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Serial Interface Description

I2C is a 2-wire serial interface developed by Philips Semiconductor, now NXP Semiconductors (see NXP Semiconductors, UM10204 – I2C-Bus Specification and User Manual ). The bus consists of a data line (SDA) and a clock line (SCL) with pullup structures. When the bus is idle, both SDA and SCL lines are pulled high. All the I2C-compatible devices connect to the I2C bus through open-drain I/O pins, SDA, and SCL. A master device, usually a microcontroller or a digital signal processor, controls the bus. The master is responsible for generating the SCL signal and device addresses. The master also generates specific conditions that indicate the START and STOP of data transfer. A slave device receives and transmits data on the bus under control of the master device.

The device works as a slave and supports the following data transfer modes, as defined in the I2C-Bus Specification:

  • Standard-mode (100 kbps)
  • Fast-mode (400 kbps)
  • Fast-mode Plus (1 Mbps)

The interface adds flexibility to the power supply solution, enabling most functions to be programmed to new values, depending on the instantaneous application requirements. Register contents remain intact as long as supply voltage remains above 2.1 V.

The data transfer protocol for standard and fast modes is exactly the same, therefore, it is referred to as F/S-mode in this document. The device supports 7-bit addressing; 10-bit addressing and general call address are not supported. The device 7-bit address is 75h (1110101b).

To make sure that the I2C function in the device is correctly reset, it is recommended that the I2C master initiates a STOP condition on the I2C bus after the initial power up of SDA and SCL pullup voltages.