SLVS493E March   2004  – April 2022 TPS65130 , TPS65131

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Conversion
      2. 7.3.2 Control
      3. 7.3.3 Enable
      4. 7.3.4 Load Disconnect
      5. 7.3.5 Soft-Start
      6. 7.3.6 Overvoltage Protection
      7. 7.3.7 Undervoltage Lockout
      8. 7.3.8 Overtemperature Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-Save Mode
      2. 7.4.2 Full Operation with VIN > 2.7 V
      3. 7.4.3 Limited Operation with VUVLO < VIN < 2.7 V
      4. 7.4.4 No Operation with VIN < VUVLO
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Programming the Output Voltage
          1. 8.2.2.1.1 Boost Converter
          2. 8.2.2.1.2 Inverting Converter
        2. 8.2.2.2 Inductor Selection
        3. 8.2.2.3 Capacitor Selection
          1. 8.2.2.3.1 Input Capacitor
          2. 8.2.2.3.2 Output Capacitors
        4. 8.2.2.4 Rectifier Diode Selection
        5. 8.2.2.5 External PMOS Selection
        6. 8.2.2.6 Stabilizing the Control Loop
          1. 8.2.2.6.1 Feedforward Capacitor
          2. 8.2.2.6.2 Compensation Capacitors
      3. 8.2.3 Analog Supply Filter
        1. 8.2.3.1 RC-Filter
        2. 8.2.3.2 LC-Filter
      4. 8.2.4 Application Curves
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
    3. 9.3 Thermal Considerations
  10. 10Device and Documentation Support
    1. 10.1 Device Support
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGE|24
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Load Disconnect

The device supports completely disconnecting the load when the converters are disabled. For the inverting converter, the device turns off the internal PMOS switch. If the inverting converter is turned off, no DC current path remains which could discharge the battery or supply.

This is different for the boost converter. The external rectifying diode, together with the boost inductor, form a DC current path which could discharge the battery or supply if any load connects to the output. The device has no internal switch to prevent current from flowing. For this reason, the device offers a PMOS gate control output (BSW) to enable and disable a PMOS switch in this DC current path, ideally directly between the boost inductor and battery. To be able to fully disconnect the battery, the forward direction of the parasitic backgate diode of this switch must point to the battery or supply. The external PMOS switch, which connects to BSW, turns on when the boost converter is enabled and turns off when the boost converter is disabled.