SLVSGA0B May   2022  – June 2024 TPS65219

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  System Control Thresholds
    6. 6.6  BUCK1 Converter
    7. 6.7  BUCK2, BUCK3 Converter
    8. 6.8  General Purpose LDOs (LDO1, LDO2)
    9. 6.9  General Purpose LDOs (LDO3, LDO4)
    10. 6.10 GPIOs and multi-function pins (EN/PB/VSENSE, nRSTOUT, nINT, GPO1, GPO2, GPIO, MODE/RESET, MODE/STBY, VSEL_SD/VSEL_DDR)
    11. 6.11 Voltage and Temperature Monitors
    12. 6.12 I2C Interface
    13. 6.13 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Power-Up Sequencing
      2. 7.3.2  Power-Down Sequencing
      3. 7.3.3  Push Button and Enable Input (EN/PB/VSENSE)
      4. 7.3.4  Reset to SoC (nRSTOUT)
      5. 7.3.5  Buck Converters (Buck1, Buck2, and Buck3)
      6. 7.3.6  Linear Regulators (LDO1 through LDO4)
      7. 7.3.7  Interrupt Pin (nINT)
      8. 7.3.8  PWM/PFM and Low Power Modes (MODE/STBY)
      9. 7.3.9  PWM/PFM and Reset (MODE/RESET)
      10. 7.3.10 Voltage Select pin (VSEL_SD/VSEL_DDR)
      11. 7.3.11 General Purpose Inputs or Outputs (GPO1, GPO2, and GPIO)
      12. 7.3.12 I2C-Compatible Interface
        1. 7.3.12.1 Data Validity
        2. 7.3.12.2 Start and Stop Conditions
        3. 7.3.12.3 Transferring Data
    4. 7.4 Device Functional Modes
      1. 7.4.1 Modes of Operation
        1. 7.4.1.1 OFF State
        2. 7.4.1.2 INITIALIZE State
        3. 7.4.1.3 ACTIVE State
        4. 7.4.1.4 STBY State
        5. 7.4.1.5 Fault Handling
    5. 7.5 Multi-PMIC Operation
    6. 7.6 User Registers
    7. 7.7 Device Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Typical Application Example
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
        1. 8.2.3.1 Buck1, Buck2, Buck3 Design Procedure
        2. 8.2.3.2 LDO1, LDO2 Design Procedure
        3. 8.2.3.3 LDO3, LDO4 Design Procedure
        4. 8.2.3.4 VSYS, VDD1P8
        5. 8.2.3.5 Digital Signals Design Procedure
      4. 8.2.4 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

The device is designed to operate with an input voltage supply range between 2.5 V and 5.5 V. This input supply can be generated from a single cell Li-Ion battery, two primary cells or a regulated pre-regulator. The voltage headroom required for each of the PMIC regulators must be taken into account when defining selecting the supply voltage. For example, if the Bucks require 700 mV head room and the output voltage is configured as 3.3V, then the input supply must be at least 4 V to allow sufficient headroom. The resistance of the input supply rail must be low enough that the input current transient does not cause too high drop in the device supply voltage that can cause false UVLO fault triggering. If the input supply is located more than a few inches from the device, additional bulk capacitance may be required in addition to the ceramic bypass capacitors. An electrolytic capacitor with a value of 47 μF is a typical choice. When using a pre-regulator to supply the PMIC, it is recommended to select the pre-regulator without active discharge to hold the voltage at the input of the PMIC for as long as possible during a uncontrolled power-down.

CAUTION: Sequencing and Voltage requirements: The voltage on PVIN_Bx, and PVIN_LDOx must not exceed VSYS. The Pull-up supply for the digital signals must not exceed VSYS at any point.