SLUSDQ8D december   2019  – may 2023 TPS652353

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Boost Converter
      2. 7.3.2  Linear Regulator and Current Limit
      3. 7.3.3  Boost Converter Current Limit
      4. 7.3.4  Charge Pump
      5. 7.3.5  Slew Rate Control
      6. 7.3.6  Short Circuit Protection, Hiccup and Overtemperature Protection
      7. 7.3.7  Tone Generation
      8. 7.3.8  Tone Detection
      9. 7.3.9  Audio Noise Rejection
      10. 7.3.10 Disable and Enable
      11. 7.3.11 Component Selection
        1. 7.3.11.1 Boost Inductor
        2. 7.3.11.2 Capacitor Selection
        3. 7.3.11.3 Surge Components
        4. 7.3.11.4 Consideration for Boost Filtering and LNB Noise
    4. 7.4 Device Functional Modes
    5. 7.5 Programming
      1. 7.5.1 Serial Interface Description
      2. 7.5.2 TPS652353 I2C Update Sequence
    6. 7.6 Register Maps
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 DiSEqc1.x Support
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 DiSEqc2.x Support
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Capacitor Selection

The TPS652353 device has a 1-MHz nonsynchronous boost converter integrated and the boost converter features the internal compensation network. The TPS652353 device works well with both ceramic capacitor and electrolytic capacitor.

The recommended ceramic capacitors for the TPS652353 application are, at the minimum, rated as X7R/X5R, with a 35-V rating, and a 1206 size for the achieving lower LNB output ripple. Table 7-1 lists the recommended ceramic capacitors list for both 4.7-µH and 10-µH boost inductors.

If more cost-effictive design is needed, use a 100-µF electrolytic (low ESR) and a 10-µF or 35-V ceramic capacitor.

Table 7-1 Boost Inductor and Capacitor Selections
BOOST INDUCTOR CAPACITORS TOLERANCE (%) RATING (V) SIZE
10 µH 2 × 22 µF ±10 35 1206
2 × 10 µF ±10 35 1206
4.7 µH 2 × 22 µF ±10 35 1206
2 × 10 µF ±10 35 1206
22 µF ±10 35 1206

Figure 7-6 and Figure 7-7 show a bode plot of boost loop with 4.7-µH and 10-µH inductance and 4 µF, 5 µF, 7.5 µF, 10 µF, 15 µF, and 20 µF of boost capacitance after degrading. As the boost capacitance increases, the phase margin increases.

GUID-6B523FE6-87E0-46E0-A3FF-A0A24E980881-low.gif Figure 7-6 Gain and Phase Margin of the Boost Loop With Different Boost Capacitance
(VIN = 12 V, VOUT = 18.2 V, ILOAD = 1 A, fSW = 1 MHz, 4.7 µH, Typical Bode Plot)
GUID-812366A6-54DF-4457-A7A1-8D46AF56800E-low.gif Figure 7-7 Gain and Phase Margin of the Boost Loop With Different Boost Capacitance
(VIN = 12 V, VOUT =18.2 V, ILOAD = 1 A, fSW = 1 MHz, 10 µH, Typical Bode Plot)