SLVSCS9D december   2014  – may 2023 TPS65263-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Adjusting the Output Voltage
      2. 7.3.2  Enable and Adjusting UVLO
      3. 7.3.3  Soft-Start Time
      4. 7.3.4  Power-Up Sequencing
      5. 7.3.5  V7V Low-Dropout Regulator and Bootstrap
      6. 7.3.6  Out-of-Phase Operation
      7. 7.3.7  Output Overvoltage Protection (OVP)
      8. 7.3.8  PSM
      9. 7.3.9  Slope Compensation
      10. 7.3.10 Overcurrent Protection
        1. 7.3.10.1 High-Side MOSFET Overcurrent Protection
        2. 7.3.10.2 Low-Side MOSFET Overcurrent Protection
      11. 7.3.11 Power Good
        1. 7.3.11.1 Adjustable Switching Frequency
      12. 7.3.12 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Serial Interface Description
      2. 7.4.2 I2C Update Sequence
    5. 7.5 Register Maps
      1. 7.5.1 VOUT2_SEL: Vout2 Voltage Selection Register (Address = 0x01H)
      2. 7.5.2 VOUT1_COM: Buck1 Command Register (offset = 0x03H)
      3. 7.5.3 VOUT2_COM: Buck2 Command Register (offset = 0x04H)
      4. 7.5.4 VOUT3_COM: Buck3 Command Register (offset = 0x05H)
      5. 7.5.5 SYS_STATUS: System Status Register (offset = 0x06H)
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Output Inductor Selection
        2. 8.2.2.2 Output Capacitor Selection
        3. 8.2.2.3 Input Capacitor Selection
        4. 8.2.2.4 Loop Compensation
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Loop Compensation

The TPS65263-Q1 incorporates a peak current mode control scheme. The error amplifier is a transconductance amplifier with a gain of 300 µS. A typical type II compensation circuit adequately delivers a phase margin between 40° and 90°. Cb adds a high-frequency pole to attenuate high-frequency noise when needed. To calculate the external compensation components, follow these steps.

  1. Select switching frequency, ƒsw, that is appropriate for application depending on L and C sizes, output ripple, EMI, and so forth. Switching frequency between 500 kHz to 1 MHz gives best trade-off between performance and cost. To optimize efficiency, lower switching frequency is desired.
  2. Set up crossover frequency, ƒc, which is typically between 1/5 and 1/20 of ƒsw.
  3. RC can be determined by:
    Equation 18. GUID-7F637A01-EA64-49BD-9BFC-EED192787A24-low.gif

    where

    • Gm_EA is the error amplifier gain (300 µS).
    • Gm_PS is the power stage voltage to current conversion gain (7.4 A/V).
  4. Calculate CC by placing a compensation zero at or before the dominant pole GUID-7988189D-3E65-49FE-BBAA-82AC504ADCCA-low.gif .
    Equation 19. GUID-78740786-EB49-4146-9D80-2B59DDC98547-low.gif
  5. Optional Cb can be used to cancel the zero from the ESR associated with CO.
    Equation 20. GUID-DB38FD52-5784-4A52-AD2F-3BBACFAF602B-low.gif
  6. Type III compensation can be implemented with the addition of one capacitor, C1. This allows for slightly higher loop bandwidths and higher phase margins. If used, calculate C1 from Equation 21.
    Equation 21. GUID-8D3B3479-366D-44BE-A9DF-BEE721FD52DC-low.gif
GUID-20230501-SS0I-38MH-T5K0-KQC1JZQ1JPBQ-low.svg Figure 8-2 DC/DC Loop Compensation