SLVSBB6F March   2012  – July 2015 TPS65300-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  DC Characteristics
    6. 6.6  Timing Requirements
    7. 6.7  Switching Characteristics
    8. 6.8  Typical Characteristics
    9. 6.9  5-V Linear Regulator (5VO)
    10. 6.10 3.3-V Linear Regulator Controller (3.3VO)
    11. 6.11 1.234-V Linear Regulator Controller (1.2VO)
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Detailed Pin Descriptions
      2. 7.3.2 Buck Converter
        1. 7.3.2.1  PWM Operation
        2. 7.3.2.2  Voltage-Mode Control Loop
        3. 7.3.2.3  Output Voltage 5.3 V (VREG)
        4. 7.3.2.4  Switching Frequency (RT/CLK)
        5. 7.3.2.5  Boost Capacitor (BOOT)
        6. 7.3.2.6  Soft Start (SS)
        7. 7.3.2.7  Power-On Delay (DELAY)
        8. 7.3.2.8  Reset (nRST)
        9. 7.3.2.9  Thermal Shutdown
        10. 7.3.2.10 Reset Function
      3. 7.3.3 Linear Regulators
        1. 7.3.3.1 Fixed Linear Regulator Output (5.3 V)
        2. 7.3.3.2 Fixed Linear Regulator Controller (3.3 V)
        3. 7.3.3.3 Fixed Linear Regulator Controller (1.2 V)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operational Mode
      2. 7.4.2 Buck Converter Modes of Operation
        1. 7.4.2.1 Continuous-Conduction Mode (CCM)
        2. 7.4.2.2 Discontinuous Mode (DCM)
        3. 7.4.2.3 Tracking Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Duty Cycle
        2. 8.2.2.2 Output Inductor Selection (L)
        3. 8.2.2.3 Output Capacitor Selection (CO)
        4. 8.2.2.4 External Schottky Diode (D)
        5. 8.2.2.5 Input Capacitor (CI)
        6. 8.2.2.6 Loop Compensation
        7. 8.2.2.7 Loop-Control Frequency Compensation
          1. 8.2.2.7.1 Type III Compensation
          2. 8.2.2.7.2 PWM Modulator Gain K
          3. 8.2.2.7.3 Resistor Values
          4. 8.2.2.7.4 Gain of Amplifier
          5. 8.2.2.7.5 Poles and Zero Frequencies
        8. 8.2.2.8 Power Dissipation
          1. 8.2.2.8.1 Switch-Mode Power-Supply Losses
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Inductor L
      2. 10.1.2 Input Filter Capacitors CI
      3. 10.1.3 Feedback
      4. 10.1.4 Traces and Ground Plane
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resource
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

11 Device and Documentation Support

11.1 Device Support

11.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

11.2 Documentation Support

11.2.1 Related Documentation

For related documentation see the following:

User's Guide, TPS65300EVM, SLVU685

11.3 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

    TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
    Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.4 Trademarks

PowerPAD, E2E are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

esds-image

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

SLYZ022TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.