SLDS222C October   2019  – October 2023 TPS65313-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Functional Block Diagram
  6. Revision History
  7. Description (continued)
  8. Device Option Table
  9. Pin Configuration and Functions
  10. Specifications
    1. 9.1  Absolute Maximum Ratings
    2. 9.2  ESD Ratings
    3. 9.3  Recommended Operating Conditions
    4. 9.4  Thermal Information
    5. 9.5  Power-On-Reset, Current Consumption, and State Timeout Characteristics
    6. 9.6  PLL/Oscillator and SYNC_IN Pin Characteristics
    7. 9.7  Wide-VIN Synchronous Buck Regulator (Wide-VIN BUCK) Characteristics
    8. 9.8  Low-Voltage Synchronous Buck Regulator (LV BUCK) Characteristics
    9. 9.9  Synchronous Boost Converter (BOOST) Characteristics
    10. 9.10 Internal Voltage Regulator (VREG) Characteristics
    11. 9.11 Voltage Monitors for Regulators Characteristics
    12. 9.12 External General Purpose Voltage Monitor Characteristics
    13. 9.13 VIN and VIN_SAFE Under-Voltage and Over-Voltage Warning Characteristics
    14. 9.14 WAKE Input Characteristics
    15. 9.15 NRES (nRESET) Output Characteristics
    16. 9.16 ENDRV/nIRQ Output Characteristics
    17. 9.17 Analog DIAG_OUT
    18. 9.18 Digital INPUT/OUTPUT IOs (SPI Interface IOs, DIAG_OUT/SYNC_OUT, MCU_ERROR)
    19. 9.19 BUCK1, BUCK2, BOOST Thermal Shutdown / Over Temperature Protection Characteristics
    20. 9.20 PGNDx Loss Detection Characteristics
    21. 9.21 SPI Timing Requirements
    22. 9.22 SPI Characteristics
    23. 9.23 Typical Characteristics
  11. 10Parameter Measurement Information
  12. 11Detailed Description
    1. 11.1  Overview
    2. 11.2  Functional Block Diagram
    3. 11.3  Wide-VIN Buck Regulator (BUCK1)
      1. 11.3.1 Fixed-Frequency Voltage-Mode Step-Down Regulator
      2. 11.3.2 Operation
      3. 11.3.3 Voltage Monitoring (Monitoring and Protection)
      4. 11.3.4 Overcurrent Protection (Monitoring and Protection)
      5. 11.3.5 Thermal Warning and Shutdown Protection (Monitoring and Protection)
      6. 11.3.6 Overvoltage Protection (OVP) (Monitoring and Protection)
      7. 11.3.7 Extreme Overvoltage Protection (EOVP) (Monitoring and Protection)
    4. 11.4  Low-Voltage Buck Regulator (BUCK2)
      1. 11.4.1 Fixed-Frequency Peak-Current Mode Step-Down Regulator
      2. 11.4.2 Operation
      3. 11.4.3 Output Voltage Monitoring (Monitoring and Protection)
      4. 11.4.4 Overcurrent Protection (Monitoring and Protection)
      5. 11.4.5 Thermal Sensor Warning and Thermal Shutdown Protection (Monitoring and Protection)
      6. 11.4.6 Overvoltage Protection (OVP) (Monitoring and Protection)
    5. 11.5  Low-Voltage Boost Converter (BOOST)
      1. 11.5.1 Output Voltage Monitoring (Monitoring and Protection)
      2. 11.5.2 Overcurrent Protection (Monitoring and Protection)
      3. 11.5.3 Thermal Sensor Warning and Shutdown Protection (Monitoring and Protection)
      4. 11.5.4 Overvoltage Protection (OVP) (Monitoring and Protection)
    6. 11.6  VREG Regulator
    7. 11.7  BUCK1, BUCK2, and BOOST Switching Clocks and Synchronization (SYNC_IN) Clock
      1. 11.7.1 Internal fSW Clock Configuration (fSW Derived from an Internal Oscillator)
      2. 11.7.2 BUCK1 Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      3. 11.7.3 BUCK2 Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      4. 11.7.4 BOOST Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      5. 11.7.5 External fSW Clock Configuration (fSW Derived from SYNC_IN and PLL Clocks)
        1. 11.7.5.1 SYNC_IN, PLL, and VCO Clock Monitors
        2. 11.7.5.2 BUCK1 Switching Clock-Monitor Error (External fSW Clock Configuration)
        3. 11.7.5.3 BUCK2 Switching Clock-Monitor Error (External fSW Clock Configuration)
        4. 11.7.5.4 BOOST Switching Clock-Monitor Error (External fSW Clock Configuration)
    8. 11.8  BUCK1, BUCK2, and BOOST Switching-Clock Spread-Spectrum Modulation
    9. 11.9  Monitoring, Protection and Diagnostics Overview
      1. 11.9.1  Safety Functions and Diagnostic Overview
      2. 11.9.2  Supply Voltage Monitor (VMON)
      3. 11.9.3  Clock Monitors
      4. 11.9.4  Analog Built-In Self-Test
        1. 11.9.4.1 ABIST During Power-Up or Start-Up Event
        2. 11.9.4.2 ABIST in the RESET state
        3. 11.9.4.3 ABIST in the DIAGNOSTIC, ACTIVE, and SAFE State
        4. 11.9.4.4 ABIST Scheduler in the ACTIVE State
      5. 11.9.5  Logic Built-In Self-Test
      6. 11.9.6  Junction Temperature Monitors
      7. 11.9.7  Current Limit
      8. 11.9.8  Loss of Ground (GND)
      9. 11.9.9  Diagnostic Output Pin (DIAG_OUT)
        1. 11.9.9.1 Analog MUX Mode on DIAG_OUT
        2. 11.9.9.2 Digital MUX Mode on DIAG_OUT
          1. 11.9.9.2.1 MUX-Output Control Mode
          2. 11.9.9.2.2 Device Interconnect Mode
      10. 11.9.10 Watchdog
        1. 11.9.10.1 WD Question and Answer Configurations
        2. 11.9.10.2 WD Failure Counter and WD Status
        3. 11.9.10.3 WD SPI Event Definitions
        4. 11.9.10.4 WD Q&A Sequence Run
        5. 11.9.10.5 WD Question and Answer Value Generation
          1. 11.9.10.5.1 WD Initialization Events
      11. 11.9.11 MCU Error Signal Monitor
      12. 11.9.12 NRES Driver
      13. 11.9.13 ENDRV/nIRQ Driver
      14. 11.9.14 CRC Protection for the Device Configuration Registers
      15. 11.9.15 CRC Protection for the Device EEPROM Registers
    10. 11.10 General-Purpose External Supply Voltage Monitors
    11. 11.11 Analog Wake-up and Failure Latch
    12. 11.12 Power-Up and Power-Down Sequences
    13. 11.13 Device Fail-Safe State Controller (Monitoring and Protection)
      1. 11.13.1 OFF State
      2. 11.13.2 INIT State
      3. 11.13.3 RESET State (ON Transition From the INIT State)
      4. 11.13.4 RESET State (ON Transition From DIAGNOSTIC, ACTIVE, and SAFE State)
      5. 11.13.5 DIAGNOSTIC State
      6. 11.13.6 ACTIVE State
      7. 11.13.7 SAFE State
      8. 11.13.8 State Transition Priorities
    14. 11.14 Wakeup
    15. 11.15 Serial Peripheral Interface (SPI)
      1. 11.15.1 SPI Command Transfer Phase
      2. 11.15.2 SPI Data Transfer Phase
      3. 11.15.3 Device SPI Status Flag Response Byte
      4. 11.15.4 Device SPI Data Response
      5. 11.15.5 Device SPI Master CRC (MCRC) Input
      6. 11.15.6 Device SPI Slave CRC (SCRC) Output
      7. 11.15.7 SPI Frame Overview
    16. 11.16 Register Maps
      1. 11.16.1 Device SPI Mapped Registers
        1. 11.16.1.1 Memory Maps
          1. 11.16.1.1.1 SPI Registers
  13. 12Applications, Implementation, and Layout
    1. 12.1 Application Information
    2. 12.2 Typical Application
      1. 12.2.1 Design Requirements
      2. 12.2.2 Detailed Design Procedure
        1. 12.2.2.1  Selecting the BUCK1, BUCK2, and BOOST Output Voltages
        2. 12.2.2.2  Selecting the BUCK1, BUCK2, and BOOST Inductors
        3. 12.2.2.3  Selecting the BUCK1 and BUCK2 Output Capacitors
        4. 12.2.2.4  Selecting the BOOST Output Capacitors
        5. 12.2.2.5  Input Filter Capacitor Selection for BUCK1, BUCK2, and BOOST
        6. 12.2.2.6  Input Filter Capacitors on AVIN and VIN_SAFE Pins
        7. 12.2.2.7  Bootstrap Capacitor Selection
        8. 12.2.2.8  Internal Linear Regulator (VREG) Output Capacitor Selection
        9. 12.2.2.9  EXTSUP Pin
        10. 12.2.2.10 WAKE Input Pin
        11. 12.2.2.11 VIO Supply Pin
        12. 12.2.2.12 External General-Purpose Voltage Monitor Input Pins (EXT_VSENSE1 and EXT_VSENSE2)
        13. 12.2.2.13 SYNC_IN Pin
        14. 12.2.2.14 MCU_ERR Pin
        15. 12.2.2.15 NRES Pin
        16. 12.2.2.16 ENDRV/nIRQ Pin
        17. 12.2.2.17 DIAG_OUT Pin
        18. 12.2.2.18 SPI Pins (NCS,SCK, SDI, SDO)
        19. 12.2.2.19 PBKGx, AGND, DGND, and PGNDx Pins
        20. 12.2.2.20 Calculations for Power Dissipation and Junction Temperature
          1. 12.2.2.20.1 BUCK1 Output Current Calculation
          2. 12.2.2.20.2 Device Power Dissipation Estimation
          3. 12.2.2.20.3 Device Junction Temperature Estimation
            1. 12.2.2.20.3.1 Example for Device Junction Temperature Estimation
      3. 12.2.3 Application Curves
      4. 12.2.4 Layout
        1. 12.2.4.1 Layout Guidelines
        2. 12.2.4.2 Layout Example
        3. 12.2.4.3 Considerations for Board-Level Reliability (BLR)
    3. 12.3 Power Supply Coupling and Bulk Capacitors
  14. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  15. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

SAFE State

The device goes into the SAFE state from the DIAGNOSTIC state or the ACTIVE state when one of the global SAFE state conditions is met or when the MCU_ESM_FC failure counter accumulates to the threshold levels defined in the SAFETY_CFG4 register. The device goes from the RESET state to the SAFE state if the device error counter (DEV_ERR_CNT) reaches the threshold level for the SAFE state lock defined by the SAFE_LOCK_TH[3:0] bits in the SAFETY_CFG1 register. The device goes from the SAFE sate and to the DIAGNOSTIC state when the system MCU sends the SAFE_EXIT command.

When the device goes into the SAFE state, the following occurs:

  • The device error counter (DEV_ERR_CNT) increments (except when the device goes from the RESET state).
  • The WD_RST_EN bit is masked (no watchdog RESET event is generated if the WD_RST_EN bit is set to 1b and the WD failure counter reaches the reset threshold). After SAFE_EXIT SPI command device transitions to RESET state if WD_RST_EN bit is set to 1b and the WD failure counter reached the WD reset threshold value WD_FC_RST_TH.
  • The ENDRV_EN control bit is cleared.
  • The ENDRV/nIRQ output is driven low, which functions as an interrupt to the system MCU, as a way to disable external safing paths or peripherals, or both.
  • The NRES stays driven high.

The SAFE state time-out is a protection feature against an unresponsive MCU that would keep the device locked in the SAFE state (SAFE LOCK condition). The SAFE state time-out duration is configurable through the SAFE_TO_CFG[1:0] configuration bits in the SAFETY_CFG1 register. To support customer software development, the SAFE state time-out protection feature can be disabled. Disabling this feature is done through the SAFE_TO_DIS bit in addition to the programmed SAFE state device error counter lock threshold value, SAFE_LOCK_TH. The SAFE state time-out is disabled when the SAFE_TO_DIS bit is set to 1b and the accumulated device error counter is greater than the SAFE state device error counter lock threshold value, SAFE_LOCK_TH.

During a SAFE LOCK condition, the device could go to the RESET state because of a global RESET event. When a global RESET condition is removed and the NRES extension is complete (and the NRES pin driven high), the device goes back to the SAFE state because the SAFE LOCK condition still occurs.

By default, the SAFE state time-out feature is disabled (the SAFE_TO_DIS bit is set to 1b) and the SAFE_LOCK_TH[3:0] bit is set to 0b. Disabling the SAFE state time-out enables easier system-software development because the system starts-up with the unprogrammed MCU. The SAFE_TO_DIS bit and the SAFE_LOCK_TH bits can only be changed when the device is in the DIAGNOSTIC state.

While the device is in the SAFE state, the system MCU can activate either a full ABIST run or an individual ABIST diagnostic test through the SPI.

While the device is in SAFE state the WD TIME_OUT event can be used by the MCU application software (SW) to establish synchronization between the device and MCU SW and HW processes. Each WD TIME_OUT event is followed by the start of a new WD Q&A sequence run. Default setting for WD_RST_EN bit is 1b.