SLDS222C October   2019  – October 2023 TPS65313-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Functional Block Diagram
  6. Revision History
  7. Description (continued)
  8. Device Option Table
  9. Pin Configuration and Functions
  10. Specifications
    1. 9.1  Absolute Maximum Ratings
    2. 9.2  ESD Ratings
    3. 9.3  Recommended Operating Conditions
    4. 9.4  Thermal Information
    5. 9.5  Power-On-Reset, Current Consumption, and State Timeout Characteristics
    6. 9.6  PLL/Oscillator and SYNC_IN Pin Characteristics
    7. 9.7  Wide-VIN Synchronous Buck Regulator (Wide-VIN BUCK) Characteristics
    8. 9.8  Low-Voltage Synchronous Buck Regulator (LV BUCK) Characteristics
    9. 9.9  Synchronous Boost Converter (BOOST) Characteristics
    10. 9.10 Internal Voltage Regulator (VREG) Characteristics
    11. 9.11 Voltage Monitors for Regulators Characteristics
    12. 9.12 External General Purpose Voltage Monitor Characteristics
    13. 9.13 VIN and VIN_SAFE Under-Voltage and Over-Voltage Warning Characteristics
    14. 9.14 WAKE Input Characteristics
    15. 9.15 NRES (nRESET) Output Characteristics
    16. 9.16 ENDRV/nIRQ Output Characteristics
    17. 9.17 Analog DIAG_OUT
    18. 9.18 Digital INPUT/OUTPUT IOs (SPI Interface IOs, DIAG_OUT/SYNC_OUT, MCU_ERROR)
    19. 9.19 BUCK1, BUCK2, BOOST Thermal Shutdown / Over Temperature Protection Characteristics
    20. 9.20 PGNDx Loss Detection Characteristics
    21. 9.21 SPI Timing Requirements
    22. 9.22 SPI Characteristics
    23. 9.23 Typical Characteristics
  11. 10Parameter Measurement Information
  12. 11Detailed Description
    1. 11.1  Overview
    2. 11.2  Functional Block Diagram
    3. 11.3  Wide-VIN Buck Regulator (BUCK1)
      1. 11.3.1 Fixed-Frequency Voltage-Mode Step-Down Regulator
      2. 11.3.2 Operation
      3. 11.3.3 Voltage Monitoring (Monitoring and Protection)
      4. 11.3.4 Overcurrent Protection (Monitoring and Protection)
      5. 11.3.5 Thermal Warning and Shutdown Protection (Monitoring and Protection)
      6. 11.3.6 Overvoltage Protection (OVP) (Monitoring and Protection)
      7. 11.3.7 Extreme Overvoltage Protection (EOVP) (Monitoring and Protection)
    4. 11.4  Low-Voltage Buck Regulator (BUCK2)
      1. 11.4.1 Fixed-Frequency Peak-Current Mode Step-Down Regulator
      2. 11.4.2 Operation
      3. 11.4.3 Output Voltage Monitoring (Monitoring and Protection)
      4. 11.4.4 Overcurrent Protection (Monitoring and Protection)
      5. 11.4.5 Thermal Sensor Warning and Thermal Shutdown Protection (Monitoring and Protection)
      6. 11.4.6 Overvoltage Protection (OVP) (Monitoring and Protection)
    5. 11.5  Low-Voltage Boost Converter (BOOST)
      1. 11.5.1 Output Voltage Monitoring (Monitoring and Protection)
      2. 11.5.2 Overcurrent Protection (Monitoring and Protection)
      3. 11.5.3 Thermal Sensor Warning and Shutdown Protection (Monitoring and Protection)
      4. 11.5.4 Overvoltage Protection (OVP) (Monitoring and Protection)
    6. 11.6  VREG Regulator
    7. 11.7  BUCK1, BUCK2, and BOOST Switching Clocks and Synchronization (SYNC_IN) Clock
      1. 11.7.1 Internal fSW Clock Configuration (fSW Derived from an Internal Oscillator)
      2. 11.7.2 BUCK1 Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      3. 11.7.3 BUCK2 Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      4. 11.7.4 BOOST Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      5. 11.7.5 External fSW Clock Configuration (fSW Derived from SYNC_IN and PLL Clocks)
        1. 11.7.5.1 SYNC_IN, PLL, and VCO Clock Monitors
        2. 11.7.5.2 BUCK1 Switching Clock-Monitor Error (External fSW Clock Configuration)
        3. 11.7.5.3 BUCK2 Switching Clock-Monitor Error (External fSW Clock Configuration)
        4. 11.7.5.4 BOOST Switching Clock-Monitor Error (External fSW Clock Configuration)
    8. 11.8  BUCK1, BUCK2, and BOOST Switching-Clock Spread-Spectrum Modulation
    9. 11.9  Monitoring, Protection and Diagnostics Overview
      1. 11.9.1  Safety Functions and Diagnostic Overview
      2. 11.9.2  Supply Voltage Monitor (VMON)
      3. 11.9.3  Clock Monitors
      4. 11.9.4  Analog Built-In Self-Test
        1. 11.9.4.1 ABIST During Power-Up or Start-Up Event
        2. 11.9.4.2 ABIST in the RESET state
        3. 11.9.4.3 ABIST in the DIAGNOSTIC, ACTIVE, and SAFE State
        4. 11.9.4.4 ABIST Scheduler in the ACTIVE State
      5. 11.9.5  Logic Built-In Self-Test
      6. 11.9.6  Junction Temperature Monitors
      7. 11.9.7  Current Limit
      8. 11.9.8  Loss of Ground (GND)
      9. 11.9.9  Diagnostic Output Pin (DIAG_OUT)
        1. 11.9.9.1 Analog MUX Mode on DIAG_OUT
        2. 11.9.9.2 Digital MUX Mode on DIAG_OUT
          1. 11.9.9.2.1 MUX-Output Control Mode
          2. 11.9.9.2.2 Device Interconnect Mode
      10. 11.9.10 Watchdog
        1. 11.9.10.1 WD Question and Answer Configurations
        2. 11.9.10.2 WD Failure Counter and WD Status
        3. 11.9.10.3 WD SPI Event Definitions
        4. 11.9.10.4 WD Q&A Sequence Run
        5. 11.9.10.5 WD Question and Answer Value Generation
          1. 11.9.10.5.1 WD Initialization Events
      11. 11.9.11 MCU Error Signal Monitor
      12. 11.9.12 NRES Driver
      13. 11.9.13 ENDRV/nIRQ Driver
      14. 11.9.14 CRC Protection for the Device Configuration Registers
      15. 11.9.15 CRC Protection for the Device EEPROM Registers
    10. 11.10 General-Purpose External Supply Voltage Monitors
    11. 11.11 Analog Wake-up and Failure Latch
    12. 11.12 Power-Up and Power-Down Sequences
    13. 11.13 Device Fail-Safe State Controller (Monitoring and Protection)
      1. 11.13.1 OFF State
      2. 11.13.2 INIT State
      3. 11.13.3 RESET State (ON Transition From the INIT State)
      4. 11.13.4 RESET State (ON Transition From DIAGNOSTIC, ACTIVE, and SAFE State)
      5. 11.13.5 DIAGNOSTIC State
      6. 11.13.6 ACTIVE State
      7. 11.13.7 SAFE State
      8. 11.13.8 State Transition Priorities
    14. 11.14 Wakeup
    15. 11.15 Serial Peripheral Interface (SPI)
      1. 11.15.1 SPI Command Transfer Phase
      2. 11.15.2 SPI Data Transfer Phase
      3. 11.15.3 Device SPI Status Flag Response Byte
      4. 11.15.4 Device SPI Data Response
      5. 11.15.5 Device SPI Master CRC (MCRC) Input
      6. 11.15.6 Device SPI Slave CRC (SCRC) Output
      7. 11.15.7 SPI Frame Overview
    16. 11.16 Register Maps
      1. 11.16.1 Device SPI Mapped Registers
        1. 11.16.1.1 Memory Maps
          1. 11.16.1.1.1 SPI Registers
  13. 12Applications, Implementation, and Layout
    1. 12.1 Application Information
    2. 12.2 Typical Application
      1. 12.2.1 Design Requirements
      2. 12.2.2 Detailed Design Procedure
        1. 12.2.2.1  Selecting the BUCK1, BUCK2, and BOOST Output Voltages
        2. 12.2.2.2  Selecting the BUCK1, BUCK2, and BOOST Inductors
        3. 12.2.2.3  Selecting the BUCK1 and BUCK2 Output Capacitors
        4. 12.2.2.4  Selecting the BOOST Output Capacitors
        5. 12.2.2.5  Input Filter Capacitor Selection for BUCK1, BUCK2, and BOOST
        6. 12.2.2.6  Input Filter Capacitors on AVIN and VIN_SAFE Pins
        7. 12.2.2.7  Bootstrap Capacitor Selection
        8. 12.2.2.8  Internal Linear Regulator (VREG) Output Capacitor Selection
        9. 12.2.2.9  EXTSUP Pin
        10. 12.2.2.10 WAKE Input Pin
        11. 12.2.2.11 VIO Supply Pin
        12. 12.2.2.12 External General-Purpose Voltage Monitor Input Pins (EXT_VSENSE1 and EXT_VSENSE2)
        13. 12.2.2.13 SYNC_IN Pin
        14. 12.2.2.14 MCU_ERR Pin
        15. 12.2.2.15 NRES Pin
        16. 12.2.2.16 ENDRV/nIRQ Pin
        17. 12.2.2.17 DIAG_OUT Pin
        18. 12.2.2.18 SPI Pins (NCS,SCK, SDI, SDO)
        19. 12.2.2.19 PBKGx, AGND, DGND, and PGNDx Pins
        20. 12.2.2.20 Calculations for Power Dissipation and Junction Temperature
          1. 12.2.2.20.1 BUCK1 Output Current Calculation
          2. 12.2.2.20.2 Device Power Dissipation Estimation
          3. 12.2.2.20.3 Device Junction Temperature Estimation
            1. 12.2.2.20.3.1 Example for Device Junction Temperature Estimation
      3. 12.2.3 Application Curves
      4. 12.2.4 Layout
        1. 12.2.4.1 Layout Guidelines
        2. 12.2.4.2 Layout Example
        3. 12.2.4.3 Considerations for Board-Level Reliability (BLR)
    3. 12.3 Power Supply Coupling and Bulk Capacitors
  14. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  15. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

NRES Driver

The NRES pin drives the reset of the primary system MCU or DSP. This pin must keep the primary MCU or DSP and peripheral devices in a defined state during power up and power down when the supply voltages are out of range or a critical failure is detected. Therefore, the NRES pin is always held at a low level when the NRES pin is asserted even if the VIN supply decreases to less than the NPOR voltage threshold (VIN_POR_F) or if the device is in the OFF state. The NRES pin is an open-drain output with an internal pullup resistor. The NRES pin is driven low when any of the NRES conditions are met. These conditions are defined as follows:

    NPOR event The device power-on reset occurs with each device power-up from the OFF state. It is the master reset source that initializes the complete device.
    Device is in OFF state Any time the device enters the OFF state.
    Device is in RESET state Any time the device enters the RESET state.
    BUCK1 undervoltage event This event occurs when the BUCK1 output voltage is less than its UV-threshold level.
    BUCK2 undervoltage event This event occurs when the BUCK2 output voltage is less than its UV-threshold level. The BUCK2 UV event must be enabled as a global RESET state event.
    BOOST undervoltage event This event occurs when the BOOST output voltage is less than its UV-threshold level. The BOOST UV event must be enabled as a global RESET state event.
    External VMON1 and VMON2 undervoltage event This event occurs when the monitored voltage of the external VMON1 or VMON2 is less than its UV-threshold level. The external VMON1 UV event and the external VMON2 UV event must be enabled as a global RESET state event.
    BUCK1 overvoltage event This event occurs when the BUCK1 output voltage is greater than its OV-threshold level. The BUCK1 OV event must be enabled as a global RESET state event.
    BUCK2 overvoltage event This event occurs when the BUCK2 output voltage is greater than its OV-threshold level. The BUCK2 OV event must be enabled as a global RESET state event.
    BOOST overvoltage event This event occurs when the BOOST output voltage is greater than its OV-threshold level. The BOOST OV event must be enabled as a global RESET state event.
    External VMON1 and VMON2 overvoltage event This event occurs when the monitored voltage of the external VMON1 or VMON2 is greater than its OV-threshold level. The external VMON1 OV event and the external VMON2 OV event must be enabled as a global RESET state event.
    MCU watchdog reset This event occurs when the WD failure counter is greater than the RESET state threshold value of the programmed WD-failure counter while WD reset is enabled.
    MCU ESM error reset This event occurs when the MCU ESM failure counter is greater than the RESET state threshold value of the programmed MCU ESM failure counter while MCU ESM reset is enabled.
    MCU SW reset request This event occurs when the MCU sends a SPI SW reset command.
    MCU warm reset This event occurs when the NRES pin driven low by the external MCU (the nRES_IN bit is set to 0b, the nRES_OUT bit is set to 1b, and the NRES_ERR_RST_EN bit is set to 1b).

The TPS65313-Q1 device keeps the NRES pin low for the programmed delay time (the RESET extension time) after all reset conditions are removed. The NRES_EXT[1:0] bits in DEV_CFG4 configuration register set the programmable reset-extension time.

GUID-7D02D8C2-BEA9-4C54-9916-30881C7AC352-low.gif Figure 11-29 The NRES Driver and Logic

The error detection circuit for NRES driver compares the external logic level on the output of NRES pin input buffer (nRES_IN) against the logic level on the input of the NRES pin output buffer (nRES_OUT). If a mismatch between the output of the NRES pin input buffer (nRES_IN) and the input of the NRES pin output buffer (nRES_OUT) logic levels is detected, the NRES_ERR status bit in the SAFETY_ERR_STAT1 register is set. The result of a detected mismatch is configured by the NRES_ERR_RST_EN bit and NRES_ERR_SAFE_EN bit in the SAFETY_CFG2 register.

In the DIAGNOSTIC state, the system MCU can run the diagnostics on the error detection circuit for the NRES driver if the system MCU can externally control the NRES pin interconnect.

Note:

The system MCU can only externally control the NRES pin interconnect if the system MCU has a single bi-direction pin used as power-on reset input and warm reset output.

The sequence to perform diagnostics on the error detection circuit for the NRES driver is as follows:

  • Force the NRES pin low externally and confirm that the NRES_ERR status bit is set while the device stays in the DIAGNOSTIC state, and when both the NRES_ERR_RST_EN and NRES_ERR_SAFE_EN bits are cleared.
  • Force the NRES pin low externally and confirm that the NRES_ERR status bit is set while the device goes into the SAFE state, when the NRES_ERR_RST_EN is cleared, and while the NRES_ERR_SAFE_EN bit is set.