SLDS222C October   2019  – October 2023 TPS65313-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Functional Block Diagram
  6. Revision History
  7. Description (continued)
  8. Device Option Table
  9. Pin Configuration and Functions
  10. Specifications
    1. 9.1  Absolute Maximum Ratings
    2. 9.2  ESD Ratings
    3. 9.3  Recommended Operating Conditions
    4. 9.4  Thermal Information
    5. 9.5  Power-On-Reset, Current Consumption, and State Timeout Characteristics
    6. 9.6  PLL/Oscillator and SYNC_IN Pin Characteristics
    7. 9.7  Wide-VIN Synchronous Buck Regulator (Wide-VIN BUCK) Characteristics
    8. 9.8  Low-Voltage Synchronous Buck Regulator (LV BUCK) Characteristics
    9. 9.9  Synchronous Boost Converter (BOOST) Characteristics
    10. 9.10 Internal Voltage Regulator (VREG) Characteristics
    11. 9.11 Voltage Monitors for Regulators Characteristics
    12. 9.12 External General Purpose Voltage Monitor Characteristics
    13. 9.13 VIN and VIN_SAFE Under-Voltage and Over-Voltage Warning Characteristics
    14. 9.14 WAKE Input Characteristics
    15. 9.15 NRES (nRESET) Output Characteristics
    16. 9.16 ENDRV/nIRQ Output Characteristics
    17. 9.17 Analog DIAG_OUT
    18. 9.18 Digital INPUT/OUTPUT IOs (SPI Interface IOs, DIAG_OUT/SYNC_OUT, MCU_ERROR)
    19. 9.19 BUCK1, BUCK2, BOOST Thermal Shutdown / Over Temperature Protection Characteristics
    20. 9.20 PGNDx Loss Detection Characteristics
    21. 9.21 SPI Timing Requirements
    22. 9.22 SPI Characteristics
    23. 9.23 Typical Characteristics
  11. 10Parameter Measurement Information
  12. 11Detailed Description
    1. 11.1  Overview
    2. 11.2  Functional Block Diagram
    3. 11.3  Wide-VIN Buck Regulator (BUCK1)
      1. 11.3.1 Fixed-Frequency Voltage-Mode Step-Down Regulator
      2. 11.3.2 Operation
      3. 11.3.3 Voltage Monitoring (Monitoring and Protection)
      4. 11.3.4 Overcurrent Protection (Monitoring and Protection)
      5. 11.3.5 Thermal Warning and Shutdown Protection (Monitoring and Protection)
      6. 11.3.6 Overvoltage Protection (OVP) (Monitoring and Protection)
      7. 11.3.7 Extreme Overvoltage Protection (EOVP) (Monitoring and Protection)
    4. 11.4  Low-Voltage Buck Regulator (BUCK2)
      1. 11.4.1 Fixed-Frequency Peak-Current Mode Step-Down Regulator
      2. 11.4.2 Operation
      3. 11.4.3 Output Voltage Monitoring (Monitoring and Protection)
      4. 11.4.4 Overcurrent Protection (Monitoring and Protection)
      5. 11.4.5 Thermal Sensor Warning and Thermal Shutdown Protection (Monitoring and Protection)
      6. 11.4.6 Overvoltage Protection (OVP) (Monitoring and Protection)
    5. 11.5  Low-Voltage Boost Converter (BOOST)
      1. 11.5.1 Output Voltage Monitoring (Monitoring and Protection)
      2. 11.5.2 Overcurrent Protection (Monitoring and Protection)
      3. 11.5.3 Thermal Sensor Warning and Shutdown Protection (Monitoring and Protection)
      4. 11.5.4 Overvoltage Protection (OVP) (Monitoring and Protection)
    6. 11.6  VREG Regulator
    7. 11.7  BUCK1, BUCK2, and BOOST Switching Clocks and Synchronization (SYNC_IN) Clock
      1. 11.7.1 Internal fSW Clock Configuration (fSW Derived from an Internal Oscillator)
      2. 11.7.2 BUCK1 Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      3. 11.7.3 BUCK2 Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      4. 11.7.4 BOOST Switching Clock-Monitor Error (Internal fSW Clock Configuration)
      5. 11.7.5 External fSW Clock Configuration (fSW Derived from SYNC_IN and PLL Clocks)
        1. 11.7.5.1 SYNC_IN, PLL, and VCO Clock Monitors
        2. 11.7.5.2 BUCK1 Switching Clock-Monitor Error (External fSW Clock Configuration)
        3. 11.7.5.3 BUCK2 Switching Clock-Monitor Error (External fSW Clock Configuration)
        4. 11.7.5.4 BOOST Switching Clock-Monitor Error (External fSW Clock Configuration)
    8. 11.8  BUCK1, BUCK2, and BOOST Switching-Clock Spread-Spectrum Modulation
    9. 11.9  Monitoring, Protection and Diagnostics Overview
      1. 11.9.1  Safety Functions and Diagnostic Overview
      2. 11.9.2  Supply Voltage Monitor (VMON)
      3. 11.9.3  Clock Monitors
      4. 11.9.4  Analog Built-In Self-Test
        1. 11.9.4.1 ABIST During Power-Up or Start-Up Event
        2. 11.9.4.2 ABIST in the RESET state
        3. 11.9.4.3 ABIST in the DIAGNOSTIC, ACTIVE, and SAFE State
        4. 11.9.4.4 ABIST Scheduler in the ACTIVE State
      5. 11.9.5  Logic Built-In Self-Test
      6. 11.9.6  Junction Temperature Monitors
      7. 11.9.7  Current Limit
      8. 11.9.8  Loss of Ground (GND)
      9. 11.9.9  Diagnostic Output Pin (DIAG_OUT)
        1. 11.9.9.1 Analog MUX Mode on DIAG_OUT
        2. 11.9.9.2 Digital MUX Mode on DIAG_OUT
          1. 11.9.9.2.1 MUX-Output Control Mode
          2. 11.9.9.2.2 Device Interconnect Mode
      10. 11.9.10 Watchdog
        1. 11.9.10.1 WD Question and Answer Configurations
        2. 11.9.10.2 WD Failure Counter and WD Status
        3. 11.9.10.3 WD SPI Event Definitions
        4. 11.9.10.4 WD Q&A Sequence Run
        5. 11.9.10.5 WD Question and Answer Value Generation
          1. 11.9.10.5.1 WD Initialization Events
      11. 11.9.11 MCU Error Signal Monitor
      12. 11.9.12 NRES Driver
      13. 11.9.13 ENDRV/nIRQ Driver
      14. 11.9.14 CRC Protection for the Device Configuration Registers
      15. 11.9.15 CRC Protection for the Device EEPROM Registers
    10. 11.10 General-Purpose External Supply Voltage Monitors
    11. 11.11 Analog Wake-up and Failure Latch
    12. 11.12 Power-Up and Power-Down Sequences
    13. 11.13 Device Fail-Safe State Controller (Monitoring and Protection)
      1. 11.13.1 OFF State
      2. 11.13.2 INIT State
      3. 11.13.3 RESET State (ON Transition From the INIT State)
      4. 11.13.4 RESET State (ON Transition From DIAGNOSTIC, ACTIVE, and SAFE State)
      5. 11.13.5 DIAGNOSTIC State
      6. 11.13.6 ACTIVE State
      7. 11.13.7 SAFE State
      8. 11.13.8 State Transition Priorities
    14. 11.14 Wakeup
    15. 11.15 Serial Peripheral Interface (SPI)
      1. 11.15.1 SPI Command Transfer Phase
      2. 11.15.2 SPI Data Transfer Phase
      3. 11.15.3 Device SPI Status Flag Response Byte
      4. 11.15.4 Device SPI Data Response
      5. 11.15.5 Device SPI Master CRC (MCRC) Input
      6. 11.15.6 Device SPI Slave CRC (SCRC) Output
      7. 11.15.7 SPI Frame Overview
    16. 11.16 Register Maps
      1. 11.16.1 Device SPI Mapped Registers
        1. 11.16.1.1 Memory Maps
          1. 11.16.1.1.1 SPI Registers
  13. 12Applications, Implementation, and Layout
    1. 12.1 Application Information
    2. 12.2 Typical Application
      1. 12.2.1 Design Requirements
      2. 12.2.2 Detailed Design Procedure
        1. 12.2.2.1  Selecting the BUCK1, BUCK2, and BOOST Output Voltages
        2. 12.2.2.2  Selecting the BUCK1, BUCK2, and BOOST Inductors
        3. 12.2.2.3  Selecting the BUCK1 and BUCK2 Output Capacitors
        4. 12.2.2.4  Selecting the BOOST Output Capacitors
        5. 12.2.2.5  Input Filter Capacitor Selection for BUCK1, BUCK2, and BOOST
        6. 12.2.2.6  Input Filter Capacitors on AVIN and VIN_SAFE Pins
        7. 12.2.2.7  Bootstrap Capacitor Selection
        8. 12.2.2.8  Internal Linear Regulator (VREG) Output Capacitor Selection
        9. 12.2.2.9  EXTSUP Pin
        10. 12.2.2.10 WAKE Input Pin
        11. 12.2.2.11 VIO Supply Pin
        12. 12.2.2.12 External General-Purpose Voltage Monitor Input Pins (EXT_VSENSE1 and EXT_VSENSE2)
        13. 12.2.2.13 SYNC_IN Pin
        14. 12.2.2.14 MCU_ERR Pin
        15. 12.2.2.15 NRES Pin
        16. 12.2.2.16 ENDRV/nIRQ Pin
        17. 12.2.2.17 DIAG_OUT Pin
        18. 12.2.2.18 SPI Pins (NCS,SCK, SDI, SDO)
        19. 12.2.2.19 PBKGx, AGND, DGND, and PGNDx Pins
        20. 12.2.2.20 Calculations for Power Dissipation and Junction Temperature
          1. 12.2.2.20.1 BUCK1 Output Current Calculation
          2. 12.2.2.20.2 Device Power Dissipation Estimation
          3. 12.2.2.20.3 Device Junction Temperature Estimation
            1. 12.2.2.20.3.1 Example for Device Junction Temperature Estimation
      3. 12.2.3 Application Curves
      4. 12.2.4 Layout
        1. 12.2.4.1 Layout Guidelines
        2. 12.2.4.2 Layout Example
        3. 12.2.4.3 Considerations for Board-Level Reliability (BLR)
    3. 12.3 Power Supply Coupling and Bulk Capacitors
  14. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  15. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

WD Q&A Sequence Run

A new WD Q&A sequence run starts after one of the following:

  • A WD time-out event (after the OPEN WINDOW and the CLOSE WINDOW elapse in WD Q&A Single-Answer mode or after RESPONSE WINDOW 1 and RESPONSE WINDOW 2 elapse in WD Q&A Multi-Answer mode without a complete answer from the MCU).
  • The modifying of the WD configuration mode or updating of the WD window duration times.
  • The writing of the final answer byte (WD_ANSWER_RESP_0) for the previous WD Q&A sequence run.

In the WD Multi-Answer Mode the WD Q&A sequence run starts with RESPONSE WINDOW 1 followed by RESEPONSE WINDOW 2 in WD Q&A multi-answer mode. The WD window duration times (tWD_RESP_WIN1 and tWD_RESP_WIN2) are configurable through the WDT_WIN1_CFG and WDT_WIN2_CFG configuration registers when the device is in the DIAGNOSTIC state. Use Equation 2 to calculate the time period for RESPONSE WINDOW 1. Use Equation 3 to calculate the time period for RESPONSE WINDOW 2.

Equation 2. tWD_RESP_WIN1 = (WD_RW1C[7:0] + 1) × 0.55 ms

where the WD_RW1C[7:0] bits are located in the WDT_WIN1_CFG SPI register.

Equation 3. tWD_RESP_WIN2 = (WD_RW2C[4:0] + 1) × 0.55 ms

where the WD_RW2C[4:0] bits are located in the WDT_WIN2_CFG SPI register.

In the WD Q&A Single-Answer Mode the WD &A sequence run starts with a CLOSE WINDOW followed by an OPEN WINDOW in WD Q&A single-answer mode. The WD window duration times (tWD_CLOSE_WIN and tWD_OPEN_WIN) are configurable through the WDT_WIN1_CFG and WDT_WIN2_CFG configuration registers when the device is in the DIAGNOSTIC state. Use Equation 4 to calculate the time period for CLOSE WINDOW. Use Equation 5 to calculate the time period for OPEN WINDOW.

Equation 4. tWD_CLOSE_WIN = (WD_CWC[7:0] + 1) × 0.55 ms

where the WD_CWC[7:0] bits are located in the WDT_WIN1_CFG SPI register.

Equation 5. tWD_OPEN_WIN = (WD_OWC[4:0] + 1) × 0.55 ms

where the WD_OWC[4:0] bits are located in the WDT_WIN2_CFG SPI register.

The WD function uses the internal 8-MHz (with ± 5% accuracy) and the SYSCLK clock as a time reference for creating the 0.55-ms time-step resolution. The SPI SW_LOCK command can be used to lock write access to the WDT_WIN1_CFG and WDT_WIN2_CFG registers.

GUID-6F72F32F-8DB3-4C55-B40C-185405A30C8A-low.gif
  1. The MCU is not required to request the WD question. The MCU can start with correct answers, WD_ANSWER_RESP_x bytes anywhere within the RESPONSE WINDOW 1. The new WD question is always generated within one system clock cycle after the final WD_ANSWER_RESP_0 answer during the previous WD Q&A sequence run.
  2. The MCU can schedule other SPI commands between the WD_ANSWER_RESPx responses (even a command requesting the WD question) without any impact to the WD function as long as the WD_ANSWER_RESP_[3:1] bytes are provided within the RESPONSE WINDOW 1 and WD_ANSWER_RESP_0 is provided within the RESPONSE WINDOW 2.
Figure 11-16 WD Q&A Sequence Run for WD Q&A Multi-Answer Mode
GUID-20231025-SS0I-SN60-H5DQ-PKNGM0HXLHPP-low.svg
  1. The MCU is not required to request the WD question. The new WD question is always generated within one system clock cycle after the correct WD_ANSWER_RESP_1 byte is provided during the previous WD Q&A sequence run.
  2. The MCU must provide a correct answer in the OPEN WINDOW.
Figure 11-17 WD Q&A Sequence Run for WD Q&A Single-Answer Mode