SLVSFN7 September   2020 TPS65982DMC

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Supply Requirements and Characteristics
    6. 6.6  Power Supervisor Characteristics
    7. 6.7  Adapter Power Switch Characteristics
    8. 6.8  USB Endpoint Requirements and Characteristics
    9. 6.9  Analog-to-Digital Converter (ADC) Characteristics
    10. 6.10 Input/Output (I/O) Requirements and Characteristics
    11. 6.11 I2C Slave Requirements and Characteristics
    12. 6.12 SPI Master Characteristics
    13. 6.13 Single-Wire Debugger (SWD) Timing Requirements
    14. 6.14 ADP_POWER_CFG Configuration Requirements
    15. 6.15 Thermal Shutdown Characteristics
    16. 6.16 Oscillator Requirements and Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Adapter Power Switch
        1. 8.3.1.1 Adapter Switch with RSENSE
        2. 8.3.1.2 Adapter Switch without RSENSE
        3. 8.3.1.3 External Current Sense
        4. 8.3.1.4 External Current Limit
        5. 8.3.1.5 Soft Start
        6. 8.3.1.6 ADP_POWER_CFG
      2. 8.3.2  USB Type-C Port Data Multiplexer
        1. 8.3.2.1 USB2.0 Low-Speed Endpoint
      3. 8.3.3  Power Management
        1. 8.3.3.1 Power-On and Supervisory Functions
        2. 8.3.3.2 Supply Switch-Over
        3. 8.3.3.3 RESETZ and MRESET
      4. 8.3.4  Digital Core
      5. 8.3.5  System Glue Logic
      6. 8.3.6  Power Reset Congrol Module (PRCM)
      7. 8.3.7  Interrupt Monitor
      8. 8.3.8  ADC Sense
      9. 8.3.9  I2C Slave
      10. 8.3.10 SPI Master
      11. 8.3.11 Single-Wire Debugger Interface
      12. 8.3.12 ADC
        1. 8.3.12.1 ADC Divider Ratios
        2. 8.3.12.2 ADC Operating Modes
        3. 8.3.12.3 Single Channel Readout
        4. 8.3.12.4 Round Robin Automatic Readout
        5. 8.3.12.5 One Time Automatic Readout
      13. 8.3.13 I/O Buffers
        1. 8.3.13.1 IOBUF_GPIOLS and IOBUF_GPIOLSI2C
        2. 8.3.13.2 IOBUF_OD
        3. 8.3.13.3 IOBUF_I2C
        4. 8.3.13.4 IOBUF_GPIOHSPI
        5. 8.3.13.5 IOBUF_GPIOHSSWD
      14. 8.3.14 Thermal Shutdown
      15. 8.3.15 Oscillators
    4. 8.4 Device Functional Modes
      1. 8.4.1 Boot Code
      2. 8.4.2 Initialization
      3. 8.4.3 I2C Configuration
      4. 8.4.4 Application Code
      5. 8.4.5 Flash Memory Read
      6. 8.4.6 Invalid Flash Memory
    5. 8.5 Programming
      1. 8.5.1 SPI Master Interface
      2. 8.5.2 I2C Slave Interface
        1. 8.5.2.1 I2C Interface Description
        2. 8.5.2.2 I2C Clock Stretching
        3. 8.5.2.3 I2C Address Setting
        4. 8.5.2.4 Unique Address Interface
        5. 8.5.2.5 I2C Pin Address Setting
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 USB4 Device Application with Host Charging
        1. 9.2.1.1 Design Requirements
          1. 9.2.1.1.1 Power Supply Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 USB Power Delivery Source Capabilities
          2. 9.2.1.2.2 USB Power Delivery Sink Capabilities
          3. 9.2.1.2.3 Supported Data Modes
          4. 9.2.1.2.4 USB4 Hub Controller & PD Controller I2C Communication
          5. 9.2.1.2.5 Dock Management Controller & PD Controller I2C Communication
          6. 9.2.1.2.6 SPI Flash Options
  10. 10Power Supply Recommendations
    1. 10.1 3.3 V Power
      1. 10.1.1 1VIN_3V3 Input Switch
      2. 10.1.2 VOUT_3V3 Output Switch
      3. 10.1.3 ADP_IN 3.3 V LDO
    2. 10.2 1.8 V Core Power
      1. 10.2.1 1.8 V Digital LDO
      2. 10.2.2 1.8 V Analog LDO
    3. 10.3 VDDIO
      1. 10.3.1 Recommended Supply Load Capacitance
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
      1. 11.2.1 Component Placement
      2. 11.2.2 Recommended Via Size and Trace Widths
      3. 11.2.3 Adapter Input Power Routing
      4. 11.2.4 USB2 Routing
      5. 11.2.5 Oval Pad for BGA Fan Out
      6. 11.2.6 Top and Bottom Layer Complete Routing
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TPS65982DMC is a simple dock management controller (DMC) for USB4 devices. The TPS65982 is capable of managing system power and alternate mode policy for system PD controllers such as the TPS65988DK. The integrated USB low-speed endpoint allows the TPS6598SDMC to provide in-field firmware update functionality for system PD controllers as well as billboard support. The TPS65982DMC may also control an input power adapter switch to soft-start system power and provide input power monitoring.

The TPS65982DMC is divided into four main sections: the adapter power switch, the port-data multiplexer, the power-management circuitry, and the digital core.

The adapter power switch provides power to the system through external switchec controlled by the integrated nFET gate drivers. For a high-level block diagram of the adapter power switch, a description of features, and more detailed circuitry, refer to the Adapter Power Switch section.

The port-data multiplexer connects the internal USB low speed controller to the UFP_USB and DBG_USB pins. For a high-level block diagram of the port-data multiplexer, a description of features, and more detailed circuitry, refer to the USB Type-C Port Data Multiplexer section.

The power-management circuitry receives and provides power to the TPS65982DMC internal circuitry and to the VOUT_3V3 and LDO_3V3 outputs. For a high-level block diagram of the power-management circuitry, a description of features and, more detailed circuitry, refer to the Power Management section.

The digital core provides the engine for managing system policy, processing firmware updates, as well as handling control of all other TPS65982DMC functionality. A small portion of the digital core contains non-volatile memory, called boot code, which is capable of initializing the TPS65982DMC and loading a larger, configurable portion of application code into volatile memory in the digital core. For a high-level block diagram of the digital core, a description of features and, more detailed circuitry, refer to the Digital Core section.

The digital core of the TPS65982DMC also interprets and uses information provided by the analog-to-digital converter ADC (see the ADC section), is configurable to read the status of general purpose inputs and trigger events accordingly, and controls general outputs which are configurable as push-pull or open-drain types with integrated pullup or pulldown resistors and can operate tied to a 1.8 V or 3.3-V rail. The TPS65982DMC is an I2C master to control system PD controllers (see the I2C Slave Interface section), a SPI master to write to and read from an external flash memory (see the SPI Master Interface section), and is programmed by a single-wire debugger (SWD) connection (see the Single-Wire Debugger Interface section).

The TPS65982DMC also integrates a thermal shutdown mechanism (see Thermal Shutdown section) and runs off of accurate clocks provided by the integrated oscillators (see the Oscillators section).