SLVSDM6C October   2016  – August 2021 TPS65983B

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Power Supply Requirements and Characteristics
    6. 7.6  Power Supervisor Characteristics
    7. 7.7  Power Consumption Characteristics
    8. 7.8  Cable Detection Characteristics
    9. 7.9  USB-PD Baseband Signal Requirements and Characteristics
    10. 7.10 USB-PD TX Driver Voltage Adjustment Parameter (1)
    11. 7.11 Port Power Switch Characteristics
    12. 7.12 Port Data Multiplexer Switching and Timing Characteristics
    13. 7.13 Port Data Multiplexer Clamp Characteristics
    14. 7.14 Port Data Multiplexer SBU Detection Requirements
    15. 7.15 Port Data Multiplexer Signal Monitoring Pullup and Pulldown Characteristics
    16. 7.16 Port Data Multiplexer USB Endpoint Requirements and Characteristics
    17. 7.17 Port Data Multiplexer BC1.2 Detection Requirements and Characteristics
    18. 7.18 Analog-to-Digital Converter (ADC) Characteristics
    19. 7.19 Input/Output (I/O) Requirements and Characteristics
    20. 7.20 I2C Slave Requirements and Characteristics
    21. 7.21 SPI Controller Characteristics
    22. 7.22 Single-Wire Debugger (SWD) Timing Requirements
    23. 7.23 BUSPOWERZ Configuration Requirements
    24. 7.24 HPD Timing Requirements and Characteristics
    25. 7.25 Thermal Shutdown Characteristics
    26. 7.26 Oscillator Requirements and Characteristics
    27. 7.27 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  USB-PD Physical Layer
        1. 9.3.1.1 USB-PD Encoding and Signaling
        2. 9.3.1.2 USB-PD Bi-Phase Marked Coding
        3. 9.3.1.3 USB-PD Transmit (TX) and Receive (Rx) Masks
        4. 9.3.1.4 USB-PD BMC Transmitter
        5. 9.3.1.5 USB-PD BMC Receiver
      2. 9.3.2  Cable Plug and Orientation Detection
        1. 9.3.2.1 Configured as a DFP
        2. 9.3.2.2 Configured as a UFP
        3. 9.3.2.3 Fast Role Swap Signaling
        4. 9.3.2.4 Dead-Battery or No-Battery Support
      3. 9.3.3  Port Power Switches
        1. 9.3.3.1  5V Power Delivery
        2. 9.3.3.2  5V Power Switch as a Source
        3. 9.3.3.3  PP_5V0 Current Sense
        4. 9.3.3.4  PP_5V0 Current Limit
        5. 9.3.3.5  Internal HV Power Delivery
        6. 9.3.3.6  Internal HV Power Switch as a Source
        7. 9.3.3.7  Internal HV Power Switch as a Sink
        8. 9.3.3.8  Internal HV Power Switch Current Sense
        9. 9.3.3.9  Internal HV Power Switch Current Limit
        10. 9.3.3.10 External HV Power Delivery
        11. 9.3.3.11 External HV Power Switch as a Source with RSENSE
        12. 9.3.3.12 External HV Power Switch as a Sink with RSENSE
        13. 9.3.3.13 External HV Power Switch as a Sink without RSENSE
        14. 9.3.3.14 External Current Sense
        15. 9.3.3.15 External Current Limit
        16. 9.3.3.16 Soft Start
        17. 9.3.3.17 BUSPOWERZ
        18. 9.3.3.18 Voltage Transitions on VBUS through Port Power Switches
        19. 9.3.3.19 HV Transition to PP_RV0 Pull-Down on VBUS
        20. 9.3.3.20 VBUS Transition to VSAVE0V
        21. 9.3.3.21 C_CC1 and C_CC2 Power Configuration and Power Delivery
        22. 9.3.3.22 PP_CABLE to C_CC1 and C_CC2 Switch Architecture
        23. 9.3.3.23 PP_CABLE to C_CC1 and C_CC2 Current Limit
      4. 9.3.4  USB Type-C Port Data Multiplexer
        1. 9.3.4.1  USB Top and Bottom Ports
        2. 9.3.4.2  Multiplexer Connection Orientation
        3. 9.3.4.3  Digital Crossbar Multiplexer
        4. 9.3.4.4  SBU Crossbar Multiplexer
        5. 9.3.4.5  Signal Monitoring and Pullup and Pulldown
        6. 9.3.4.6  Port Multiplexer Clamp
        7. 9.3.4.7  USB2.0 Low-Speed Endpoint
        8. 9.3.4.8  Battery Charger (BC1.2) Detection Block
        9. 9.3.4.9  BC1.2 Data Contact Detect
        10. 9.3.4.10 BC1.2 Primary and Secondary Detection
      5. 9.3.5  Power Management
        1. 9.3.5.1 Power-On and Supervisory Functions
        2. 9.3.5.2 Supply Switch-Over
        3. 9.3.5.3 RESETZ and MRESET
      6. 9.3.6  Digital Core
      7. 9.3.7  USB-PD BMC Modem Interface
      8. 9.3.8  System Glue Logic
      9. 9.3.9  Power Reset Congrol Module (PRCM)
      10. 9.3.10 Interrupt Monitor
      11. 9.3.11 ADC Sense
      12. 9.3.12 UART
      13. 9.3.13 I2C Slave
      14. 9.3.14 SPI Controller
      15. 9.3.15 Single-Wire Debugger Interface
      16. 9.3.16 DisplayPort HPD Timers
      17. 9.3.17 ADC
        1. 9.3.17.1 ADC Divider Ratios
        2. 9.3.17.2 ADC Operating Modes
        3. 9.3.17.3 Single Channel Readout
        4. 9.3.17.4 Round Robin Automatic Readout
        5. 9.3.17.5 One Time Automatic Readout
      18. 9.3.18 I/O Buffers
        1. 9.3.18.1 IOBUF_GPIOLS and IOBUF_GPIOLSI2C
        2. 9.3.18.2 IOBUF_OD
        3. 9.3.18.3 IOBUF_UTX
        4. 9.3.18.4 IOBUF_URX
        5. 9.3.18.5 IOBUF_PORT
        6. 9.3.18.6 IOBUF_I2C
        7. 9.3.18.7 IOBUF_GPIOHSPI
        8. 9.3.18.8 IOBUF_GPIOHSSWD
      19. 9.3.19 Thermal Shutdown
      20. 9.3.20 Oscillators
    4. 9.4 Device Functional Modes
      1. 9.4.1 Boot Code
      2. 9.4.2 Initialization
      3. 9.4.3 I2C Configuration
      4. 9.4.4 Dead-Battery Condition
      5. 9.4.5 Application Code
      6. 9.4.6 Flash Memory Read
      7. 9.4.7 Invalid Flash Memory
      8. 9.4.8 UART Download
        1. 9.4.8.1 Primary TPS65983B Flash Master and Secondary Port
    5. 9.5 Programming
      1. 9.5.1 SPI Controller Interface
      2. 9.5.2 I2C Slave Interface
        1. 9.5.2.1 I2C Interface Description
        2. 9.5.2.2 I2C Clock Stretching
        3. 9.5.2.3 I2C Address Setting
        4. 9.5.2.4 Unique Address Interface
        5. 9.5.2.5 I2C Pin Address Setting
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Fully-Featured USB Type-C and PD Charger Application
        1. 10.2.1.1 Design Requirements
          1. 10.2.1.1.1 External FET Path Components (PP_EXT and RSENSE)
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 TPS65983B External Flash
          2. 10.2.1.2.2 I2C (I2C), Debug Control (DEBUG_CTL), and Single-Wire De-bugger (SWD) Resistors
          3. 10.2.1.2.3 Oscillator (R_OSC) Resistor
          4. 10.2.1.2.4 VBUS Capacitor and Ferrite Bead
          5. 10.2.1.2.5 Soft Start (SS) Capacitor
          6. 10.2.1.2.6 USB Top (C_USB_T), USB Bottom (C_USB_B), and Sideband-Use (SBU) Connections
          7. 10.2.1.2.7 Port Power Switch (PP_EXT, PP_HV, PP_5V0, and PP_CABLE) Capacitors
          8. 10.2.1.2.8 Cable Connection (CCn) Capacitors and RPD_Gn Connections
          9. 10.2.1.2.9 LDO_3V3, LDO_1V8A, LDO_1V8D, LDO_BMC, VOUT_3V3, VIN_3V3, and VDDIO
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Dual-Port Notebook Application Supporting USB PD Charging and DisplayPort
        1. 10.2.2.1 Design Requirements
          1. 10.2.2.1.1 Source Power Delivery Profiles for Type-C Ports
          2. 10.2.2.1.2 Sink Power Delivery Profile for Type-C Ports
        2. 10.2.2.2 Detailed Design Procedure
          1. 10.2.2.2.1 TPS65983B and System Controller Interaction
          2. 10.2.2.2.2 HD3SS460 Control and DisplayPort Configuration
          3. 10.2.2.2.3 9.3.2.3 DC Barrel Jack and Type-C PD Charging
          4. 10.2.2.2.4 TPS65983B Dead Battery Support Primary and Secondary Port
          5. 10.2.2.2.5 Debugging Methods
        3. 10.2.2.3 Application Curves
  11. 11Power Supply Recommendations
    1. 11.1 3.3 V Power
      1. 11.1.1 1VIN_3V3 Input Switch
      2. 11.1.2 VOUT_3V3 Output Switch
      3. 11.1.3 VBUS 3.3 V LDO
    2. 11.2 1.8 V Core Power
      1. 11.2.1 1.8 V Digital LDO
      2. 11.2.2 1.8 V Analog LDO
    3. 11.3 VDDIO
      1. 11.3.1 Recommended Supply Load Capacitance
      2. 11.3.2 Schottky for Current Surge Protection
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1  TPS65983B Recommended Footprints
        1. 12.1.1.1 Standard TPS65983B Footprint (Circular Pads)
      2. 12.1.2  Alternate TPS65983B Footprint (Oval Pads)
      3. 12.1.3  Top TPS65983B Placement and Bottom Component Placement and Layout
      4. 12.1.4  Oval Pad Footprint Layout and Placement
      5. 12.1.5  Component Placement
      6. 12.1.6  Designs Rules and Guidance
      7. 12.1.7  Routing PP_HV, PP_EXT, PP_5V0, and VBUS
      8. 12.1.8  Routing Top and Bottom Passive Components
      9. 12.1.9  Void Via Placement
      10. 12.1.10 Top Layer Routing
      11. 12.1.11 Inner Signal Layer Routing
      12. 12.1.12 Bottom Layer Routing
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Development Support
    2. 13.2 Documentation Support
      1. 13.2.1 Related Documentation
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Support Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Port Data Multiplexer Switching and Timing Characteristics

Recommended operating conditions; TA = –10 to +85°C unless otherwise noted
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SWD MULTIPLEXER PATH(1)
SWD_RON_U On resistance of SWD_DATA/CLK to C_USB_TP/TN/BP/BN Vi = 3.3 V, IO = 20 mA 35 55 Ω
Vi = 1 V, IO = 20 mA 30 46
SWD_ROND_U On resistance difference between P and N paths of SWD_DATA/CLK to C_USB_ TP/TN/BP/BN Vi = 1 V to 3.3 V, IO = 20 mA –2.5 2.5 Ω
SWD_RON_S On resistance of SWD_DATA/CLK to C_SBU1/2 Vi = 3.3 V, IO = 20 mA 26 42 Ω
Vi = = 1 V, IO = 20 mA 24 37
SWD_ROND_S On resistance difference between P and N paths of SWD_DATA/CLK to C_SBU1/2 Vi = 1V to 3.3 V, IO = 20 mA –1.5 1.5 Ω
SWD_TON Switch on time from enable of SWD path Time from enable bit with charge pump off 150 μs
Time from enable bit at charge pump steady state 10
SWD_TOFF Switch off time from disable of SWD path Time from disable bit at charge pump steady state 500 ns
SWD_BW 3 dB bandwidth of SWD path CL = 10 pF 200 MHz
DEBUG1/2 MULTIPLEXER PATH(1)
DB1_RON_U On resistance DEBUG1/2 to C_USB_TP/TN/BP/BN Vi = 3.3 V, IO = 20 mA 14 26 Ω
Vi = 1 V, IO = 20 mA 10 17
DB1_ROND_U On resistance difference between P and N paths of DEBUG1/2 to C_USB_TP/TN/BP/BN Vi = 1 V to 3.3 V, IO = 20 mA –2.5 2.5 Ω
DB1_RON_S On resistance of DEBUG1/2 to C_SBU1/2 Vi = 3.3 V, IO = 20 mA 9.5 17 Ω
Vi = 1 V, IO = 20 mA 6.5 12
DB1_ROND_S On resistance difference between P and N paths of Debug path DEBUG1/2 to C_SBU1/2 Vi = 1 V to 3.3 V, IO = 20 mA –0.5 0.5 Ω
DB1_TON Switch on time from enable of DEBUG path Time from enable bit with charge pump off 150 μs
Time from enable bit at charge pump steady state 10
DB1_TOFF Switch off time from disable of DEBUG path Time from disable bit at charge pump steady state 500 ns
DB1_BW 3dB bandwidth of DEBUG path CL = 10 pF 200 MHz
DEBUG3/4 MULTIPLEXER PATH(1)
DB3_RON_U On resistance of DEBUG3/4 to C_USB_TP/TN/BP/BN Vi = 3.3 V, IO = 20 mA 14 24 Ω
Vi = 1 V, IO = 20 mA 9 17
DB3_ROND_U On resistance difference between P and N paths of DEBUG3/4 to C_USB_ TP/TN/BP/BN Vi = 1 V to 3.3V, IO = 20 mA –1.5 1.5 Ω
DB3_RON_S On resistance of DEBUG3/4 to C_SBU1/2 Vi = 3.3 V, IO = 20 mA 9.5 18 Ω
Vi = 1 V, IO = 20 mA 6.5 12
DB3_ROND_S On resistance difference between P and N paths of DEBUG3/4 to C_SBU1/2 Vi = 1 V to 3.3 V, IO = 20 mA –0.15 0.15 Ω
DB3_TON Switch on time from enable of DEBUG3/4 path Time from enable bit with charge pump off 150 μs
Time from enable bit at charge pump steady state 10
DB3_TOFF Switch off time from disable of DEBUG3/4 path Time from disable bit at charge pump steady state 500 ns
DB3_BW 3dB bandwidth of DEBUG3/4 path CL = 10 pF 200 MHz
LSX_R2P/P2R MULTIPLEXER PATH(1)
LSX_RON On resistance of LSX_P2R/R2P to C_SBU1/2 Vi = 3.3 V, IO = 20 mA 8.5 17 Ω
Vi = 1 V, IO = 20 mA 5.5 11
LSX_ROND On resistance difference between P and N paths of LSX path Vi = 1 V to 3.3 V, IO = 20 mA –0.3 0.3 Ω
LSX_TON Switch on time from enable of LSX path Time from enable bit with charge pump off 150 μs
Time from enable bit at charge pump steady state 10
LSX_TOFF Switch off time from disable of LSX path Time from disable bit at charge pump steady state 500 ns
LSX_BW 3dB bandwidth of LSX path CL = 10 pF 200 MHz
AUX MULTIPLEXER PATH(1)
AUX_RON On resistance of AUX_P/N to C_SBU1/2 Vi = 3.3 V, IO = 20 mA 3.5 7 Ω
Vi = 1 V, IO = 20 mA 2.5 5
AUX_ROND On resistance difference between P and N paths of AUX_P/N to C_SBU1/2 Vi = 1 V to 3.3 V, IO = 20 mA –0.25 0.25 Ω
AUX_TON Switch on time from enable of AUX_P/N to C_SBU1/2 Time from enable bit with charge pump off 150 μs
Time from enable bit at charge pump steady state 15
AUX_TOFF Switch off time from disable of AUX_P/N to C_SBU1/2 Time from disable bit at charge pump steady state 500 ns
AUX_BW 3dB bandwidth of AUX_P/N to C_SBU1/2 path CL = 10 pF 200 MHz
UART MULTIPLEXER PATH (2nd Stage Only)(1)(2)
UART_RON On resistance of UART buffers to C_USB_TP/TN/BP/BN or C_SBU1/2 Vi = 3.3 V, IO = 20 mA 3.1 12 Ω
UART_TON Switch on time from enable of UART buffer C_USB_TP/TN/BP/BN or C_SBU1/2 path Time from enable bit with charge pump off 150 µs
Time from enable bit at charge pump steady state 10
UART_TOFF Switch off time from disable of UART buffer path Time from disable bit at charge pump steady state 500 ns
UART_BW 3dB bandwidth of UART buffer path CL = 10 pF 200 MHz
USB_RP MULTIPLEXER PATH(1)(3)
USB_RON On resistance of USB_RP to C_USB_TP/TN/BP/BN Vi = 3 V, IO = 20 mA 4.5 10 Ω
Vi = 400 mV, IO = 20 mA 3 7
USB_ROND On resistance difference between P and N paths of USB_RP to C_USB_TP/TN/BP/BN Vi = 0.4 V to 3 V, IO = 20 mA –0.15 0.15 Ω
USB_TON Switch on time from enable of USB USB_RP path Time from enable bit with charge pump off 150 µs
Time from enable bit at charge pump steady state 15
USB_TOFF Switch off time from disable of USB_RP path Time from disable bit at charge pump steady state 500 ns
USB_BW 3dB bandwidth of USB_RP path CL = 10 pF 850 MHz
USB_ISO Off Isolation of USB_RP path RL = 50 Ω, VI = 800 mV, f = 240 MHz –19 dB
USB_XTLK Channel to Channel crosstalk of USB_RP path RL = 50 Ω, f = 240 MHz –26 dB
C_SBU1/2 OUTPUT
R_SBU_OPEN Resistance of the open C_SBU1/2 paths Vi = 0 V to LDO_3V3 1
R_USB_OPEN Resistance of the open C_USB_T/B/P/N paths Vi = 0 V to LDO_3V3 1
All RON specified maximums are the maximum of either of the switches in a pair. All ROND specified maximums are the maximum difference between the two switches in a pair. ROND does not add to RON.
The UART switch path connects from the UART buffers to the port pins. See Section 7.19 for buffer specifications.
See Section 7.16 for the USB_EP specifications.