SLVSF34B May   2019  – October 2022 TPS65987DDJ

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Supply Requirements and Characteristics
    6. 6.6  Power Consumption Characteristics
    7. 6.7  Power Switch Characteristics
    8. 6.8  Cable Detection Characteristics
    9. 6.9  USB-PD Baseband Signal Requirements and Characteristics
    10. 6.10 BC1.2 Characteristics
    11. 6.11 Thermal Shutdown Characteristics
    12. 6.12 Oscillator Characteristics
    13. 6.13 I/O Characteristics
    14. 6.14 I2C Requirements and Characteristics
    15. 6.15 SPI Controller Timing Requirements
    16. 6.16 HPD Timing Requirements
    17. 6.17 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  USB-PD Physical Layer
        1. 8.3.1.1 USB-PD Encoding and Signaling
        2. 8.3.1.2 USB-PD Bi-Phase Marked Coding
        3. 8.3.1.3 USB-PD Transmit (TX) and Receive (Rx) Masks
        4. 8.3.1.4 USB-PD BMC Transmitter
        5. 8.3.1.5 USB-PD BMC Receiver
      2. 8.3.2  Power Management
        1. 8.3.2.1 Power-On And Supervisory Functions
        2. 8.3.2.2 VBUS LDO
        3. 8.3.2.3 Supply Switch Over
      3. 8.3.3  Port Power Switches
        1. 8.3.3.1 PP_HV Power Switch
          1. 8.3.3.1.1 PP_HV Overcurrent Clamp
          2. 8.3.3.1.2 PP_HV Overcurrent Protection
          3. 8.3.3.1.3 PP_HV OVP and UVP
          4. 8.3.3.1.4 PP_HV Reverse Current Protection
        2. 8.3.3.2 Schottky for Current Surge Protection
        3. 8.3.3.3 PP_EXT Power Path Control
        4. 8.3.3.4 PP_CABLE Power Switch
          1. 8.3.3.4.1 PP_CABLE Overcurrent Protection
          2. 8.3.3.4.2 PP_CABLE Input Good Monitor
        5. 8.3.3.5 VBUS Transition to VSAFE5V
        6. 8.3.3.6 VBUS Transition to VSAFE0V
      4. 8.3.4  Cable Plug and Orientation Detection
        1. 8.3.4.1 Configured as a DFP
        2. 8.3.4.2 Configured as a UFP
        3. 8.3.4.3 Configured as a DRP
        4. 8.3.4.4 Fast Role Swap Signaling
      5. 8.3.5  Dead Battery Operation
        1. 8.3.5.1 Dead Battery Advertisement
        2. 8.3.5.2 BUSPOWER (ADCIN1)
      6. 8.3.6  Battery Charger Detection and Advertisement
        1. 8.3.6.1 BC1.2 Data Contact Detect
        2. 8.3.6.2 BC1.2 Primary and Secondary Detection
        3. 8.3.6.3 Charging Downstream Port Advertisement
        4. 8.3.6.4 Dedicated Charging Port Advertisement
        5. 8.3.6.5 2.7-V Divider3 Mode Advertisement
        6. 8.3.6.6 1.2-V Mode Advertisement
        7. 8.3.6.7 DCP Auto Mode Advertisement
      7. 8.3.7  ADC
      8. 8.3.8  DisplayPort HPD
      9. 8.3.9  Digital Interfaces
        1. 8.3.9.1 General GPIO
        2. 8.3.9.2 I2C
        3. 8.3.9.3 SPI
      10. 8.3.10 Digital Core
      11. 8.3.11 I2C Interfaces
        1. 8.3.11.1 I2C Interface Description
        2. 8.3.11.2 I2C Clock Stretching
        3. 8.3.11.3 I2C Address Setting
        4. 8.3.11.4 Unique Address Interface
        5. 8.3.11.5 I2C Pin Address Setting (ADCIN2)
      12. 8.3.12 SPI Controller Interface
      13. 8.3.13 Thermal Shutdown
      14. 8.3.14 Oscillators
    4. 8.4 Device Functional Modes
      1. 8.4.1 Boot
      2. 8.4.2 Power States
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Type-C VBUS Design Considerations
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Type-C Connector VBUS Capacitors
          2. 9.2.1.2.2 VBUS Schottky and TVS Diodes
          3. 9.2.1.2.3 VBUS Snubber Circuit
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Notebook Design Supporting PD Charging
        1. 9.2.2.1 USB and DisplayPort Notebook Supporting PD Charging
          1. 9.2.2.1.1 Design Requirements
          2. 9.2.2.1.2 Detailed Design Procedure
            1. 9.2.2.1.2.1 USB Power Delivery Source Capabilities
            2. 9.2.2.1.2.2 USB Power Delivery Sink Capabilities
            3. 9.2.2.1.2.3 f
            4. 9.2.2.1.2.4 TUSB1046 Super Speed Mux GPIO Control
        2. 9.2.2.2 Thunderbolt Notebook Supporting PD Charging
          1. 9.2.2.2.1 Design Requirements
          2. 9.2.2.2.2 Detailed Design Procedure
            1. 9.2.2.2.2.1 USB Power Delivery Source Capabilities
            2. 9.2.2.2.2.2 USB Power Delivery Sink Capabilities
            3. 9.2.2.2.2.3 Thunderbolt Supported Data Modes
            4. 9.2.2.2.2.4 RESETN
            5. 9.2.2.2.2.5 I2C Design Requirements
            6. 9.2.2.2.2.6 TS3DS10224 SBU Mux for AUX and LSTX/RX
            7. 9.2.2.2.2.7 Thunderbolt Flash Options
        3. 9.2.2.3 USB and DisplayPort Dock with Bus-Powered and Self-Powered Support
          1. 9.2.2.3.1 Design Requirements
          2. 9.2.2.3.2 Detailed Design Procedure
            1. 9.2.2.3.2.1 USB Power Delivery Source Capabilities
            2. 9.2.2.3.2.2 USB Power Delivery Sink Capabilities
            3. 9.2.2.3.2.3 USB and DisplayPort Supported Data Modes
            4. 9.2.2.3.2.4 TUSB1064 Super Speed Mux GPIO Control
  10. 10Power Supply Recommendations
    1. 10.1 3.3-V Power
      1. 10.1.1 VIN_3V3 Input Switch
      2. 10.1.2 VBUS 3.3-V LDO
    2. 10.2 1.8-V Power
    3. 10.3 Recommended Supply Load Capacitance
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Top TPS65987DDJ Placement and Bottom Component Placement and Layout
    2. 11.2 Layout Example
    3. 11.3 Component Placement
    4. 11.4 Routing PP_HV1/2, VBUS, PP_CABLE, VIN_3V3, LDO_3V3, LDO_1V8
    5. 11.5 Routing CC and GPIO
    6. 11.6 Thermal Dissipation for FET Drain Pads
    7. 11.7 USB2 Recommended Routing For BC1.2 Detection/Advertisement
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
      2. 12.1.2 Firmware Warranty Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pin Configuration and Functions

GUID-A535F5C6-59E3-48E2-9466-080BD04DDADA-low.gif Figure 5-1 RSH Package56-Pin QFNTop View
Table 5-1 Pin Functions
PIN TYPE(2) RESET STATE(1) DESCRIPTION
NAME NO.
ADCIN1 6 I Input Boot configuration Input. Connect to resistor divider between LDO_3V3 and GND.
ADCIN2 10 I Input I2C address configuration Input. Connect to resistor divider between LDO_3V3 and GND.
C_CC1 24 I/O High-Z Output to Type-C CC or VCONN pin . Filter noise with capacitor to GND
C_CC2 26 I/O High-Z Output to Type-C CC or VCONN pin . Filter noise with capacitor to GND
C_USB_N (GPIO19) 53 I/O Input (High-Z) USB D– connection for BC1.2 support
C_USB_P (GPIO18) 50 I/O Input (High-Z) USB D+ connection for BC1.2 support
DRAIN1 8, 15, 19, 58 Drain of internal power path 1. Connect thermal pad 58 to as big of pad as possible on PCB for best thermal performance. Short the other pins to this thermal pad
DRAIN2 7, 52, 56, 57 Drain of internal power path 2. Connect thermal pad 57 to as big of pad as possible on PCB for best thermal performance. Short the other pins to this thermal pad
GND 20, 45 , 46, 47, 51 Unused pin. Tie to GND.
GPIO0 16 I/O Input (High-Z) General Purpose Digital I/O 0. Float pin when unused. GPIO0 is asserted low during the TPS65987DDJ boot process. Once device configuration and patches are loaded GPIO0 is released
GPIO1 17 I/O Input (High-Z) General Purpose Digital I/O 1. Ground pin with a 1-MΩ resistor when unused in the application
GPIO2 18 I/O Input (High-Z) General Purpose Digital I/O 2. Float pin when unused
GPIO3 (HPD) 30 I/O Input (High-Z) General Purpose Digital I/O 3. Configured as Hot Plug Detect (HPD) TX and RX when DisplayPort alternate mode is enabled. Float pin when unused
GPIO4 31 I/O Input (High-Z) General Purpose Digital I/O 4. Float pin when unused
I2C3_SCL (GPIO5) 21 I/O Input (High-Z) I2C port 3 serial clock. Open-drain output. Tie pin to I/O voltage through a 10-kΩ resistance when used. Float pin when unused
I2C3_SDA (GPIO6) 22 I/O Input (High-Z) I2C port 3 serial data. Open-drain output. Tie pin to I/O voltage through a 10-kΩ resistance when used. Float pin when unused
I2C3_IRQ (GPIO7) 23 I/O Input (High-Z) I2C port 3 interrupt detection (port 3 operates as an I2C Master Only). Active low detection. Connect to the I2C slave's interrupt line to detect when the slave issues an interrupt. Float pin when unused
GPIO12 40 I/O Input (High-Z) General Purpose Digital I/O 12. Float pin when unused
GPIO13 41 I/O Input (High-Z) General Purpose Digital I/O 13. Float pin when unused
GPIO14 (PWM) 42 I/O Input (High-Z) General Purpose Digital I/O 14. May also function as a PWM output. Float pin when unused
GPIO15 (PWM) 43 I/O Input (High-Z) General Purpose Digital I/O 15. May also function as a PWM output. Float pin when unused
GPIO16 (PP_EXT1) 48 I/O Input (High-Z) General Purpose Digital I/O 16. May also function as single wire enable signal for external power path 1. Pull-down with external resistor when used for external path control. Float pin when unused
GPIO17 (PP_EXT2) 49 I/O Input (High-Z) General Purpose Digital I/O 17. May also function as single wire enable signal for external power path 2. Pull-down with external resistor when used for external path control. Float pin when unused
GPIO20 54 I/O Input (High-Z) General Purpose Digital I/O 20. Float pin when unused
GPIO21 55 I/O Input (High-Z) General Purpose Digital I/O 21. Float pin when unused
HRESET 44 I/O Input Active high hardware reset input. Will reinitialize all device settings. Ground pin when HRESET functionality will not be used
I2C1_IRQ 29 O High-Z I2C port 1 interrupt. Active low. Implement externally as an open drain with a pull-up resistance. Float pin when unused
I2C1_SCL 27 I/O High-Z I2C port 1 serial clock. Open-drain output. Tie pin to I/O voltage through a 10-kΩ resistance when used or unused
I2C1_SDA 28 I/O High-Z I2C port 1 serial data. Open-drain output. Tie pin to I/O voltage through a 10-kΩ resistance when used or unused
I2C2_IRQ 34 O High-Z I2C port 2 interrupt. Active low. Implement externally as an open drain with a pull-up resistance. Float pin when unused
I2C2_SCL 32 I/O High-Z I2C port 2 serial clock. Open-drain output. Tie pin to I/O voltage through a 10-kΩ resistance when used or unused
I2C2_SDA 33 I/O High-Z I2C port 2 serial data. Open-drain output. Tie pin to I/O voltage through a 10-kΩ resistance when used or unused
LDO_1V8 35 PWR Output of the 1.8-V LDO for internal circuitry. Bypass with capacitor to GND
LDO_3V3 9 PWR Output of the VBUS to 3.3-V LDO or connected to VIN_3V3 by a switch. Main internal supply rail. Used to power external flash memory. Bypass with capacitor to GND
PP_CABLE 25 PWR 5-V supply input for port 1 C_CC pins. Bypass with capacitor to GND
PP_HV1 11, 12 PWR System side of first VBUS power switch. Bypass with capacitor to ground. Tie to ground when unused
PP_HV2 1, 2 PWR System side of second VBUS power switch. Bypass with capacitor to ground. Tie to ground when unused
SPI_CLK 38 I/O Input SPI serial clock. Ground pin when unused
SPI_POCI 36 I/O Input SPI serial controller input from peripheral. Ground pin when unused
SPI_PICO 37 I/O Input SPI serial controller output to peripheral. Ground pin when unused
SPI_CS 39 I/O Input SPI chip select. Ground pin when unused
VBUS1 13, 14 PWR Port side of first VBUS power switch. Bypass with capacitor to ground. Tie to VBUS2
VBUS2 3, 4 PWR Port side of second VBUS power switch. Bypass with capacitor to ground. Tie to VBUS1
VIN_3V3 5 PWR Supply for core circuitry and I/O. Bypass with capacitor to GND
Thermal Pad (PPAD) 59 GND Ground reference for the device as well as thermal pad used to conduct heat from the device. This connection serves two purposes. The first purpose is to provide an electrical ground connection for the device. The second purpose is to provide a low thermal-impedance path from the device die to the PCB. This pad must be connected to a ground plane
Reset State indicates the state of a given pin immediately following power application, prior to any configuration from firmware.
I = input, O = output, I/O = bidirectional, GND = ground, PWR = power, NC = no connect