SLVSEW8B August   2019  – December 2019 TPS66020 , TPS66021

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Function Table
      1.      TPS6602x Block Diagram
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Recommended Supply Load Capacitance
    5. 6.5  Thermal Information
    6. 6.6  PP5V Power Switch Characteristics
    7. 6.7  PPHV Power Switch Characteristics
    8. 6.8  Power Path Supervisory
    9. 6.9  VBUS LDO Characteristics
    10. 6.10 Thermal Shutdown Characteristics
    11. 6.11 Input-output (I/O) Characteristics
    12. 6.12 Power Consumption Characteristics
    13. 6.13 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 5-V Source (PP5V Power Path)
        1. 8.3.1.1 PP5V Current Limit
        2. 8.3.1.2 PP5V Reverse Current Protection (RCP)
      2. 8.3.2 20-V Sink (PPHV Power Path)
        1. 8.3.2.1 PPHV Soft Start
        2. 8.3.2.2 PPHV Reverse Current Protection (RCP)
      3. 8.3.3 Overtemperature Protection
      4. 8.3.4 VBUS Overvoltage Protection (OVP)
      5. 8.3.5 Power Management and Supervisory
        1. 8.3.5.1 Supply Connections
        2. 8.3.5.2 Power Up Sequences
          1. 8.3.5.2.1 Normal Power Up
          2. 8.3.5.2.2 Dead Battery Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 State Transitions
        1. 8.4.1.1 DISABLED State
        2. 8.4.1.2 SRC 1.5-A State
        3. 8.4.1.3 SRC 3-A State
        4. 8.4.1.4 SNK State
        5. 8.4.1.5 FRS (Fast Role Swap) State
      2. 8.4.2 SRC FAULT State
      3. 8.4.3 SNK FAULT State
      4. 8.4.4 Device Functional Mode Summary
      5. 8.4.5 Enabling the PP5V Source Path
      6. 8.4.6 Enabling the PPHV Sink Path
      7. 8.4.7 Fast Role Swap (FRS)
        1. 8.4.7.1 Overview
        2. 8.4.7.2 Fast Role Swap Use Cases
        3. 8.4.7.3 Fast Role Swap Sequence
      8. 8.4.8 Faults
        1. 8.4.8.1 Fault Types
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 External Current Reference Resistor (RIREF)
        2. 9.2.2.2 External VLDO Capacitor (CVLDO)
        3. 9.2.2.3 PP5V Power Path Capacitance
        4. 9.2.2.4 PPHV, VBUS Power Path Capacitance
        5. 9.2.2.5 VBUS TVS Protection (Optional)
        6. 9.2.2.6 VBUS Schottky Diode Protection (Optional)
        7. 9.2.2.7 VBUS Overvoltage Protection (Optional)
        8. 9.2.2.8 Dead Battery Support
        9. 9.2.2.9 Fast Role Swap (FRS) (Optional)
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

VBUS Overvoltage Protection (Optional)

VBUS Overvoltage Protection (OVP) is optional. If VBUS OVP is not required, then the OVP terminal should be tied to ground as shown in Figure 12. VBUS OVP is used to detect voltages on VBUS that exceed a set threshold. Upon detection, the PPHV power path is disabled quickly to help protect components connected downstream of the PPHV terminal. It should be noted that VBUS OVP is not a replacement for VBUS TVS protection which is protecting the VBUS terminal itself.

The VBUS OVP threshold is set by a resistor divider from the VBUS terminal to ground as shown in Figure 11. For this design, R1 and R2 are fixed values to provide VBUS OVP protection at the highest voltage contract level. Using R1 = 432-kΩ and R2 =20-kΩ sets a nominal VBUS OVP threshold of 22.6 V. For some applications, it may be desirable to dynamically change the VBUS OVP level based on the negotiated power contract. One possible way is shown in Figure 13. In this case, the PD controller via GPIO, selects the proper divider ratio to set the VBUS OVP threshold based on the negotiated voltage contract level.