SLVSEW8B August   2019  – December 2019 TPS66020 , TPS66021

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Function Table
      1.      TPS6602x Block Diagram
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Recommended Supply Load Capacitance
    5. 6.5  Thermal Information
    6. 6.6  PP5V Power Switch Characteristics
    7. 6.7  PPHV Power Switch Characteristics
    8. 6.8  Power Path Supervisory
    9. 6.9  VBUS LDO Characteristics
    10. 6.10 Thermal Shutdown Characteristics
    11. 6.11 Input-output (I/O) Characteristics
    12. 6.12 Power Consumption Characteristics
    13. 6.13 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 5-V Source (PP5V Power Path)
        1. 8.3.1.1 PP5V Current Limit
        2. 8.3.1.2 PP5V Reverse Current Protection (RCP)
      2. 8.3.2 20-V Sink (PPHV Power Path)
        1. 8.3.2.1 PPHV Soft Start
        2. 8.3.2.2 PPHV Reverse Current Protection (RCP)
      3. 8.3.3 Overtemperature Protection
      4. 8.3.4 VBUS Overvoltage Protection (OVP)
      5. 8.3.5 Power Management and Supervisory
        1. 8.3.5.1 Supply Connections
        2. 8.3.5.2 Power Up Sequences
          1. 8.3.5.2.1 Normal Power Up
          2. 8.3.5.2.2 Dead Battery Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 State Transitions
        1. 8.4.1.1 DISABLED State
        2. 8.4.1.2 SRC 1.5-A State
        3. 8.4.1.3 SRC 3-A State
        4. 8.4.1.4 SNK State
        5. 8.4.1.5 FRS (Fast Role Swap) State
      2. 8.4.2 SRC FAULT State
      3. 8.4.3 SNK FAULT State
      4. 8.4.4 Device Functional Mode Summary
      5. 8.4.5 Enabling the PP5V Source Path
      6. 8.4.6 Enabling the PPHV Sink Path
      7. 8.4.7 Fast Role Swap (FRS)
        1. 8.4.7.1 Overview
        2. 8.4.7.2 Fast Role Swap Use Cases
        3. 8.4.7.3 Fast Role Swap Sequence
      8. 8.4.8 Faults
        1. 8.4.8.1 Fault Types
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 External Current Reference Resistor (RIREF)
        2. 9.2.2.2 External VLDO Capacitor (CVLDO)
        3. 9.2.2.3 PP5V Power Path Capacitance
        4. 9.2.2.4 PPHV, VBUS Power Path Capacitance
        5. 9.2.2.5 VBUS TVS Protection (Optional)
        6. 9.2.2.6 VBUS Schottky Diode Protection (Optional)
        7. 9.2.2.7 VBUS Overvoltage Protection (Optional)
        8. 9.2.2.8 Dead Battery Support
        9. 9.2.2.9 Fast Role Swap (FRS) (Optional)
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Related Links
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Dead Battery Support

The TPS6602x integrates a high-voltage VBUS LDO that can be used to supply power to a PD Controller and other supporting circuitry when only VBUS power is available, such as in a dead battery condition. As shown in Figure 29, the TPS66020 VLDO output supplies power to the PD Controller's 3V_IN supply. Similarly, Figure 28 shows the TPS66021 VLDO output supplies power to the PD Controller's 5V_IN supply. During a dead battery condition, the PD Controller presents its Type-C RPD pull-downs on the CC1 and CC2 lines. Upon connection to a Type-C/PD Source, 5 V is provided to VBUS from the Source partner which powers the TPS6602x. The VBUS LDO is enabled and provides power to the PD Controller. Once powered, the PD Controller can decide to enable the TPS6602x PPHV Sink path by asserting EN0 high and use the 5-V VBUS to charge the battery or it may choose to negotiate a higher voltage contract first. Either way, once the contract is negotiated, the PD Controller will enable the PPHV Sink path and charge the system. Once the system is sufficiently charged, the VIN terminal will rise and will exceed the VIN UVLO threshold. If VIN remains above the UVLO threshold for tVIN_STABLE, VLDO will be supplied from VIN and the VBUS LDO will be disabled.