SBVS372C December   2018  – December 2022 TPS7A25

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
  7. Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Output Enable
      2. 8.3.2 Dropout Voltage
      3. 8.3.3 Current Limit
      4. 8.3.4 Undervoltage Lockout (UVLO)
      5. 8.3.5 Thermal Shutdown
      6. 8.3.6 Power Good
      7. 8.3.7 Active Overshoot Pulldown Circuitry
    4. 8.4 Device Functional Modes
      1. 8.4.1 Device Functional Mode Comparison
      2. 8.4.2 Normal Operation
      3. 8.4.3 Dropout Operation
      4. 8.4.4 Disabled
        1.       Application and Implementation
          1. 9.1 Application Information
            1. 9.1.1 Adjustable Device Feedback Resistors
            2. 9.1.2 Recommended Capacitor Types
            3. 9.1.3 Input and Output Capacitor Requirements
            4. 9.1.4 Reverse Current
            5. 9.1.5 Feed-Forward Capacitor (CFF)
            6. 9.1.6 Power Dissipation (PD)
            7. 9.1.7 Estimating Junction Temperature
            8. 9.1.8 Special Consideration for Line Transients
          2. 9.2 Typical Application
            1. 9.2.1 Design Requirements
            2. 9.2.2 Detailed Design Procedure
              1. 9.2.2.1 Transient Response
              2. 9.2.2.2 Selecting Feedback Divider Resistors
              3. 9.2.2.3 Thermal Dissipation
            3. 9.2.3 Application Curve
          3. 9.3 Power Supply Recommendations
          4. 9.4 Layout
            1. 9.4.1 Layout Guidelines
            2. 9.4.2 Layout Examples
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  10. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Mechanical Data

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DRV|6
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The TPS7A25 low-dropout (LDO) linear voltage regulator introduces a combination of a 2.4-V to 18-V input voltage range with very-low quiescent current (IQ). These features help modern appliances meet increasingly stringent energy requirements, and help extend battery life in portable-power solutions.

The TPS7A25 is available in both fixed and adjustable versions. For more flexibility or higher output voltages, the adjustable version uses feedback resistors to set the output voltage from 1.24 V to 17.64 V. Both versions have a 1% output regulation accuracy that provides precision regulation for most microcontroller (MCU) references.

The TPS7A25 LDO operates more efficiently than standard linear regulators because the maximum dropout voltage is less than 340 mV at 300 mA of current. This maximum dropout voltage allows for 92.5% efficiency from a 5.4-V input voltage (VIN) to a 5.0-V output voltage (VOUT).

The power-good (PG) indicator can be used to either hold an MCU in reset until power is good, or for sequencing. The PG pin is an open-drain output; therefore, the pin is easily level-shifted for monitoring by a rail other than VOUT. The built-in current limit and thermal shutdown help protect the regulator in the event of a load short or fault.

For a higher output current alternative, consider the TPS7A26.

Package Information(1)
PART NUMBER PACKAGE BODY SIZE (NOM)
TPS7A25 DRV (WSON, 6) 2.00 mm × 2.00 mm
For all available packages, see the package option addendum at the end of the data sheet.
GUID-77182093-4D9A-4EFA-944B-727E3635924E-low.gif Typical Application Circuit