SBVS248A November   2015  – November 2015 TPS7A88

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Independent Dual-Channel LDO
      2. 7.3.2 Output Enable
      3. 7.3.3 Dropout Voltage (VDO)
      4. 7.3.4 Output Voltage Accuracy
      5. 7.3.5 Low Output Noise
      6. 7.3.6 Internal Protection Circuitry
        1. 7.3.6.1 Undervoltage Lockout (UVLO)
        2. 7.3.6.2 Internal Current Limit (ICL)
        3. 7.3.6.3 Thermal Protection
      7. 7.3.7 Output Soft-Start Control
      8. 7.3.8 Power-Good Function
    4. 7.4 Device Functional Modes
      1. 7.4.1 Normal Operation
      2. 7.4.2 Dropout Operation
      3. 7.4.3 Disabled
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Adjustable Outputs
      2. 8.1.2 Start-Up
        1. 8.1.2.1 Enable (ENx) and Undervoltage Lockout (UVLO)
        2. 8.1.2.2 Noise-Reduction and Soft-Start Capacitor (CNR/SSx)
        3. 8.1.2.3 Soft-Start and Inrush Current
      3. 8.1.3 Capacitor Recommendation
        1. 8.1.3.1 Input and Output Capacitor Requirements (CINx and COUTx)
        2. 8.1.3.2 Feed-Forward Capacitor (CFFx)
      4. 8.1.4 AC Performance
        1. 8.1.4.1 Power-Supply Ripple Rejection (PSRR)
        2. 8.1.4.2 Channel-to-Channel Output Isolation and Crosstalk
        3. 8.1.4.3 Load-Step Transient Response
        4. 8.1.4.4 Noise
      5. 8.1.5 Power Dissipation (PD)
      6. 8.1.6 Estimating Junction Temperature
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Do's and Don'ts
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Board Layout
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Evaluation Modules
        2. 11.1.1.2 Spice Models
      2. 11.1.2 Device Nomenclature
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating junction temperature range and all voltages with respect to GND (unless otherwise noted)(1)
MIN MAX UNIT
Voltage INx, PGx, ENx(3) –0.3 7.0 V
INx, PGx, ENx (5% duty cycle, pulse duration = 200 µs) –0.3 7.5
OUTx –0.3 VINx + 0.3(2)
SS_CTRLx –0.3 VINx + 0.3(2)
NR/SSx, FBx(3) –0.3 3.6
Current OUTx(3) Internally limited A
PGx (sink current into device)(3) 5 mA
Operating junction temperature, TJ –55 150 °C
Storage temperature, Tstg –55 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The absolute maximum rating is VINx + 0.3 V or 7.0 V, whichever is smaller.
(3) Lowercase x indicates that the specification under consideration applies to both channel 1 and channel 2, one channel at a time.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101(2) ±500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating junction temperature range (unless otherwise noted)
MIN MAX UNIT
VINx Input supply voltage range 1.4 6.5 V
VOUTx Output voltage range 0.8 5.0 V
IOUTx Output current 0 1 A
CINx Input capacitor, each input 10 µF
COUTx Output capacitor 10 µF
CNR/SSx Noise-reduction capacitor 1 µF
RPG Power-good pullup resistance 10 100
TJ Junction temperature range –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) TPS7A88 UNIT
RTJ (WQFN)
20 PINS
RθJA Junction-to-ambient thermal resistance 33 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 26.8 °C/W
RθJB Junction-to-board thermal resistance 8.0 °C/W
ψJT Junction-to-top characterization parameter 0.3 °C/W
ψJB Junction-to-board characterization parameter 8.0 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.4 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

over operating temperature range (TJ = –40°C to +125°C), VINx = 1.4 V, VOUTx(TARGET) = 0.8 V, IOUTx = 50 mA, VENx = 1.4 V, COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, SS_CTRLx = GND, PGx pin pulled up to VINx with 100 kΩ, and for each channel (unless otherwise noted); typical values are at TJ = 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VINx(3) Input supply voltage range 1.4 6.5 V
VREF Reference voltage 0.8 V
VUVLO Input supply UVLO VINx rising 1.31 1.39 V
VHYS VUVLO 290 mV
VOUTx Output voltage range 0.8 – 1.0% 5.0 + 1.0% V
Output voltage accuracy(1)(2) 0.8 V ≤ VOUTx ≤ 5 V, 5 mA ≤ IOUTx ≤ 1 A –1.0% 1.0%
ΔVOUTx(ΔVINx) Line regulation IOUTx= 5 mA, 1.4 V ≤ VINx ≤ 6.5 V 0.003 %/V
ΔVOUTx(ΔIOUTx) Load regulation 5 mA ≤ IOUTx ≤ 1 A 0.03 %/A
VDO Dropout voltage VINx ≥ 1.4 V, 0.8 V ≤ VOUTx ≤ 5.0 V,
IOUTx = 1 A, VFBx = 0.8 V – 3%
200 mV
ILIM Output current limit VOUTx forced at 0.9 × VOUTx(TARGET),
VINx = VOUTx(TARGET) + 300 mV
1.5 1.7 1.9 A
IGND GND pin current Both channels enabled, per channel,
VINx = 6.5 V, IOUTx = 5 mA
2.1 3.5 mA
Both channels enabled, per channel,
VINx = 1.4 V, IOUTx = 1 A
4
ISDN Shutdown GND pin current Both channels shutdown, per channel, PGx = (open),
VINx = 6.5 V, VENx = 0.5 V
0.1 15 μA
IENx ENx pin current VINx = 6.5 V, 0 V ≤ VENx ≤ 6.5 V –0.2 0.2 μA
VIL(ENx) ENx pin low-level input voltage (device disabled) 0 0.4 V
VIH(ENx) ENx pin high-level input voltage (device enabled) 1.1 6.5 V
ISS_CTRLx SS_CTRLx pin current VINx = 6.5 V, 0 V ≤ VSS_CTRLx ≤ 6.5 V –0.2 0.2 μA
VIT(PGx) PGx pin threshold For PGx transitioning low with falling VOUTx, expressed as a percentage of VOUTx(TARGET) 82% 88.9% 93%
Vhys(PGx) PGx pin hysteresis For PGx transitioning high with rising VOUTx, expressed as a percentage of VOUTx(TARGET) 1%
VOL(PGx) PGx pin low-level output voltage VOUTx < VIT(PGx), IPGx = –1 mA (current into device) 0.4 V
Ilkg(PGx) PGx pin leakage current VOUTx > VIT(PGx), VPGx = 6.5 V 1 µA
INR/SSx NR/SSx pin charging current VNR/SSx = GND, 1.4 V ≤ VINx ≤ 6.5 V,
VSS_CTRLx = GND
4.0 6.2 9.0 µA
VNR/SSx = GND, 1.4 V ≤ VINx ≤ 6.5 V, VSS_CTRLx = VINx 65 100 150
IFBx FBx pin leakage current VINx = 6.5 V, VFBx = 0.8 V –100 100 nA
PSRR Power-supply ripple rejection f = 500 kHz, VINx = 3.8 V, VOUTx = 3.3 V,
IOUTx = 750 mA, CNR/SSx = 10 nF, CFFx = 10 nF
40 dB
Vn Output noise voltage BW = 10 Hz to 100 kHz, VINx = 1.8 V, VOUTx = 0.8 V,
IOUTx = 1.0 A, CNR/SSx = 1 µF, CFFx = 100 nF
3.8 μVRMS
Noise spectral density f = 10 kHz, VINx = 1.8 V, VOUTx = 0.8 V,
IOUTx = 1.0 A, CNR/SSx = 10 nF, CFFx = 10 nF
11 nV/√Hz
Rdiss Output active discharge resistance VENx = GND 250 Ω
Tsd Thermal shutdown temperature Shutdown, temperature increasing 160 °C
Reset, temperature decreasing 140
(1) When the device is connected to external feedback resistors at the FBx pin, external resistor tolerances are not included.
(2) The device is not tested under conditions where VINx > VOUTx + 2.5 V and IOUTx = 1 A because the power dissipation is higher than the maximum rating of the package. Also, this accuracy specification does not apply on any application condition that exceeds the power dissipation limit of the package under test.
(3) Lowercase x indicates that the specification under consideration applies to both channel 1 and channel 2, one channel at a time.

6.6 Typical Characteristics

at TJ = 25°C, 1.4 V ≤ VINx < 6.5 V, VINx ≥ VOUTx(TARGET) + 0.3 V, VOUTx = 0.8 V, SS_CTRLx = GND, IOUTx = 5 mA, VENx = 1.1 V, COUTx = 10 μF, CNR/SSx = 0 nF, CFFx = 0 nF, PGx pin pulled up to VOUTx with 100 kΩ, and SS_CTRLx = GND (unless otherwise noted)
TPS7A88 D021_SBVS248.gif
VOUTx = 1.2 V, VINx = VENx = 1.7 V, IOUTx = 1 A, COUTx = 10 µF, CNR/SSx = CFFx = 10 nF
Figure 1. Power-Supply Rejection vs Output Current
TPS7A88 D020_SBVS248.gif
VOUTx = 1.2 V, IOUTx = 1.0 A, COUTx = 10 µF,
CNR/SSx = CFFx = 10 nF
Figure 3. Power-Supply Rejection vs Input Voltage
TPS7A88 D025_SBVS248.gif
VOUTx = 1.2 V, VINx = VENx = 1.7 V, IOUTx = 1.0 A,
COUTx = ceramic, CFFx = 10 nF
Figure 5. Power-Supply Rejection vs Output Capacitance
TPS7A88 D026_SBVS248.gif
VOUTx = 1.8 V, IOUTx = 100 mA, COUTx = 10 µF,
CNR/SSx = CFFx = 10 nF
Figure 7. Channel-to-Channel Output Voltage Isolation vs Frequency
TPS7A88 D029_SBVS248.gif
VINx = 1.7 V, VOUTx = 1.2 V, IOUTx = 1.0 A, VRMS BW = 10 Hz to 100 kHz, COUTx = 10 µF, CFFx = 10 nF
Figure 9. Spectral Noise Density vs CNR/SSx
TPS7A88 D028_SBVS248.gif
VOUTx = 1.2 V, IOUTx = 1.0 A, COUTx = 10 µF, CNR/SSx = 10 nF
Figure 11. Spectral Noise Density vs VINx
TPS7A88 D037_SBVS248.gif
VOUTx = 1.8 V, IOUTx = 1.0 A, CFFx = 0.01 µF,
BW = 10 Hz to 100 kHz
Figure 13. RMS Output Noise vs CNR/SSx
TPS7A88 sbvs248_VOUTTrans1_2.gif
VINx = 1.5 V, IOUTx = 100 mA to 1 A to 100 mA at 1 A/µs,
COUTx = 10 µF
Figure 15. Load Transient Response (VOUTx = 1.2 V)
TPS7A88 sbvs248_line_trans.gif
VINx = 1.4 V to 6.5 V to 1.4 V at 2 V/µs, VOUTx = 0.8 V,
IOUTx = 1 A, CNR/SSx = CFFx = 10 nF
Figure 17. Line Transient
TPS7A88 sbvs248_startup_0_GNDr.gif
VINx = 1.4 V
Figure 19. Start-Up (SS_CTRLx = GND, CNR/SSx = 0 nF)
TPS7A88 sbvs248_startup_01_VIN.gif
VINx = 1.4 V
Figure 21. Start-Up (SS_CTRLx = VINx, CNR/SSx = 10 nF)
TPS7A88 D016_SBVS248.gif
VINx = 5.5 V
Figure 23. Dropout Voltage vs Output Current
TPS7A88 D010_SBVS248.gif
VINx = 1.4 V
Figure 25. Load Regulation (VOUTx = 0.8 V)
TPS7A88 D011_SBVS248.gif
VINx = 3.8 V
Figure 27. Load Regulation (VOUTx = 3.3 V)
TPS7A88 D012_SBVS248.gif
VINx = 5.5 V
Figure 29. Load Regulation (VOUTx = 5.0 V)
TPS7A88 D003_SBVS248.gif
VINx = 1.4 V, both channels enabled
Figure 31. Ground Current vs Output Current
TPS7A88 D033_SBVS248.gif
Figure 33. PG Low Level vs PG Current (VINx = 1.4 V)
TPS7A88 D014_SBVS248.gif
VINx = 6.5 V
Figure 35. PG Threshold vs Temperature
TPS7A88 D007_SBVS248.gif
Figure 37. Soft-Start Current vs Temperature
(SS_CTRLx = GND)
TPS7A88 D002_SBVS248.gif
Figure 39. Enable Threshold vs Temperature (VINx = 1.4 V)
TPS7A88 D015_SBVS248.gif
Figure 41. Input UVLO Threshold vs Temperature
TPS7A88 D024_SBVS248.gif
VOUTx = 1.2 V, VINx = VENx = 1.7 V, IOUTx = 1.0 A, COUTx = 10 µF, CFFx = 10 nF
Figure 2. Power-Supply Rejection vs CNR/SSx
TPS7A88 D023_SBVS248.gif
VOUTx = 3.3 V, VINx = VENx = 3.8 V, IOUTx = 1 A, COUTx = 10 µF, CNR/SSx = CFFx = 10 nF
Figure 4. Power-Supply Rejection vs Output Current
TPS7A88 D022_SBVS248.gif
VOUTx = 3.3 V, IOUTx = 1.0 A, COUTx = 10 µF,
CNR/SSx = CFFx = 10 nF
Figure 6. Power-Supply Rejection vs Input Voltage
TPS7A88 D027_SBVS248.gif
VINx = VOUTx + 1.0 V, IOUTx = 1.0 A, VRMS BW = 10 Hz to 100 kHz, COUTx = 10 µF, CNR/SSx = CFFx = 10 nF
Figure 8. Spectral Noise Density vs Output Voltage
TPS7A88 D035_SBVS248.gif
VINx = 3.8 V, VOUTx = 3.3 V, IOUTx = 1.0 A, VRMS BW = 10 Hz to 100 kHz, COUTx = 10 µF, CNR/SSx = 10 nF
Figure 10. Spectral Noise Density vs CFFx
TPS7A88 D036_SBVS248.gif
VOUTx = 1.8 V, IOUTx = 1.0 A, VRMS BW = 10 Hz to 100 kHz,
CFFx = 0.01 µF
Figure 12. Spectral Noise Density vs COUTx
TPS7A88 D038_SBVS248.gif
VOUTx = 1.8 V, IOUTx = 1.0 A, CNR/SSx = 1 µF,
BW = 10 Hz to 100 kHz
Figure 14. RMS Output Noise vs CFFx
TPS7A88 sbvs248_VOUTTrans5_0.gif
VINx = 5.5 V, IOUTx = 100 mA to 1 A to 100 mA at 1 A/µs,
COUTx = 10 µF
Figure 16. Load Transient Response (VOUTx = 5.0 V)
TPS7A88 D001_SBVS248.gif
VINx = 1.8 V, VOUTx = 1.5 V
Figure 18. Current Limit Foldback
TPS7A88 sbvs248_startup_01_GND.gif
VINx = 1.4 V
Figure 20. Start-Up (SS_CTRLx = GND, CNR/SSx = 10 nF)
TPS7A88 sbvs248_startup_1_VIN.gif
VINx = 1.4 V
Figure 22. Start-Up (SS_CTRLx = VINx, CNR/SSx = 1 µF)
TPS7A88 D017_SBVS248.gif
IOUTx = 1 A
Figure 24. Dropout Voltage vs Input Voltage
TPS7A88 D008_SBVS248.gif
IOUTx = 50 mA
Figure 26. Line Regulation (VOUTx = 0.8 V)
TPS7A88 D009_SBVS248.gif
IOUTx = 5 mA
Figure 28. Line Regulation (VOUTx = 3.3 V)
TPS7A88 D005_SBVS248.gif
Both channels
Figure 30. Shutdown Current vs Input Voltage
TPS7A88 D004_SBVS248.gif
Both channels enabled
Figure 32. Ground Current vs Input Voltage
TPS7A88 D034_SBVS248.gif
Figure 34. PG Low Level vs PG Current (VINx = 6.5 V)
TPS7A88 D013_SBVS248.gif
VINx = VPGx = 6.5 V
Figure 36. PG Leakage Current vs Temperature
TPS7A88 D006_SBVS248.gif
Figure 38. Soft-Start Current vs Temperature
(SS_CTRLx = VINx)
TPS7A88 D018_SBVS248.gif
Figure 40. Enable Threshold vs Temperature (VINx = 6.5 V)