SNOSDH4A June   2024  – December 2024 TPS7H6005-SEP , TPS7H6015-SEP , TPS7H6025-SEP

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Device Options Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Quality Conformance Inspection
    8. 7.8 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage
      2. 8.3.2  Linear Regulator Operation
      3. 8.3.3  Bootstrap Operation
        1. 8.3.3.1 Bootstrap Charging
        2. 8.3.3.2 Bootstrap Capacitor
        3. 8.3.3.3 Bootstrap Diode
        4. 8.3.3.4 Bootstrap Resistor
      4. 8.3.4  High-Side Driver Startup
      5. 8.3.5  Inputs and Outputs
      6. 8.3.6  Dead Time
      7. 8.3.7  Input Interlock Protection
      8. 8.3.8  Undervoltage Lockout and Power Good (PGOOD)
      9. 8.3.9  Negative SW Voltage Transients
      10. 8.3.10 Level Shifter
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Bootstrap and Bypass Capacitors
        2. 9.2.2.2 Bootstrap Diode
        3. 9.2.2.3 BP5x Overshoot and Undershoot
        4. 9.2.2.4 Gate Resistor
        5. 9.2.2.5 Dead Time Resistor
        6. 9.2.2.6 Gate Driver Losses
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Examples
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DCA|56
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input Interlock Protection

The TPS7H60x5 can be configured to have input interlock protection in independent input mode (IIM). To activate the input interlock protection in IIM, DHL must be connected to 5V while DLH has a resistor (valued between 100kΩ and 220kΩ) connected between the pin and AGND. This protection is intended to improve the robustness and reliability of the power stage with which the driver is being used by preventing shoot-through of the GaN FETs in a half-bridge configuration. In any instance when the protection is enabled and both inputs are logic high, the internal logic turns both of the outputs off. Both outputs remain off until one of the inputs goes low, in which case the outputs follow the input logic. There is no fixed time deglitching for this feature in order to not impact the propagation delay and dead time of the driver. Small filters at the inputs of the driver can be utilized to improve robustness in noise prone applications.

TPS7H6005-SP TPS7H6015-SP TPS7H6025-SP TPS7H6005-SEP TPS7H6015-SEP TPS7H6025-SEP Input Interlock Protection in
                    Independent Input ModeFigure 8-5 Input Interlock Protection in Independent Input Mode