SWCS059I March   2011  – November 2014 TPS80032

PRODUCT PREVIEW Information. Product in design phase of development. Subject to change or discontinuance without notice.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Terminal Configuration and Functions
    1. 3.1 Pin Diagram
    2. 3.2 Pin Attributes
  4. 4Specifications
    1. 4.1 Absolute Maximum Ratings
    2. 4.2 Handling Ratings
    3. 4.3 Recommended Operating Conditions
    4. 4.4 Thermal Characteristics for YFF Package
    5. 4.5 Electrical Characteristics
      1. 4.5.1  Switched-Mode Regulators
      2. 4.5.2  LDO Regulators
      3. 4.5.3  Reference Generator
      4. 4.5.4  Crystal Oscillator
      5. 4.5.5  RC Oscillators
      6. 4.5.6  CLK32KAUDIO Buffer
      7. 4.5.7  Backup Battery Charger
      8. 4.5.8  Switched-Mode System Supply Regulator
      9. 4.5.9  Battery Charger
      10. 4.5.10 Indicator LED Driver
      11. 4.5.11 USB OTG
      12. 4.5.12 Gas Gauge
      13. 4.5.13 GPADC
      14. 4.5.14 Thermal Monitoring
      15. 4.5.15 System Control Thresholds
      16. 4.5.16 Current Consumption
      17. 4.5.17 Digital Input Signal Electrical Parameters
      18. 4.5.18 Digital Output Signal Electrical Parameters
      19. 4.5.19 Digital Output Signal Timing Characteristics
    6. 4.6 Typical Characteristics
  5. 5Detailed Description
    1. 5.1  Real-Time Clock
    2. 5.2  Clocks
    3. 5.3  Power Management
      1. 5.3.1 Finite State Machine (FSM)
      2. 5.3.2 Hardware Events
      3. 5.3.3 Software Events
      4. 5.3.4 Resource Definition
      5. 5.3.5 Resource Operating Modes
        1. 5.3.5.1 Voltage Regulator Operating Modes (All Types)
        2. 5.3.5.2 REGEN1 / REGEN2 / SYSEN Operating Modes
        3. 5.3.5.3 SMPS Operating Modes
        4. 5.3.5.4 Main Bandgap Operating Modes
        5. 5.3.5.5 Comparators Operating Modes
        6. 5.3.5.6 Hot-die Warning Operating Modes
        7. 5.3.5.7 Clocks and PWM1 / PWM2 Drivers Operating Modes
      6. 5.3.6 Addressing Resources Registers
        1. 5.3.6.1 State Register (CFG_STATE)
        2. 5.3.6.2 State Mapping Register (CFG_TRANS)
        3. 5.3.6.3 Voltage Register (CFG_VOLTAGE)
        4. 5.3.6.4 Force Register (CFG_FORCE)
        5. 5.3.6.5 Step Register (CFG_STEP)
      7. 5.3.7 Power Management I/Os Functionality
        1. 5.3.7.1 BOOT[2:0]
        2. 5.3.7.2 PWRON
        3. 5.3.7.3 RPWRON
        4. 5.3.7.4 REGEN1, REGEN2
        5. 5.3.7.5 SYSEN
      8. 5.3.8 PREQ1, PREQ2, PREQ3 Hardware Commands
      9. 5.3.9 DVS Software Commands
    4. 5.4  Reset System
      1. 5.4.1 Warm Reset (NRESWARM)
      2. 5.4.2 Primary Watchdog Reset
      3. 5.4.3 Thermal Shutdown
      4. 5.4.4 NRESPWRON
    5. 5.5  System Control
    6. 5.6  System Voltage/Battery Comparator Thresholds
    7. 5.7  Power Resources
      1. 5.7.1 Short-Circuit Protection
      2. 5.7.2 SMPS Regulators
        1. 5.7.2.1 Soft Start
        2. 5.7.2.2 Inductor Selection
        3. 5.7.2.3 Output Capacitor Selection
        4. 5.7.2.4 Input Capacitor Selection
        5. 5.7.2.5 SMPS1, SMPS2, SMPS5
        6. 5.7.2.6 SMPS3, SMPS4
      3. 5.7.3 LDO Regulators
        1. 5.7.3.1 VANA
        2. 5.7.3.2 VRTC, VBRTC
        3. 5.7.3.3 LDO1, LDO2, LDO3, LDO4, LDO5, LDO6, LDO7
        4. 5.7.3.4 LDOLN, LDOUSB
    8. 5.8  Backup Battery Charger
    9. 5.9  Battery Charging
      1. 5.9.1  Charger and System Supply Regulator Controller Operation
        1. 5.9.1.1 Power Path with Hardware Controlled Charging
        2. 5.9.1.2 Power Path with Software Controlled Charging
        3. 5.9.1.3 Non-Power Path with Hardware Controlled Charging
        4. 5.9.1.4 Non-Power Path with Software Controlled Charging
      2. 5.9.2  System Supply Regulator
      3. 5.9.3  Battery Charging
        1. 5.9.3.1 Power Path Configuration
        2. 5.9.3.2 Non-Power Path Configuration
        3. 5.9.3.3 Preconditioning
        4. 5.9.3.4 Precharge Phase
        5. 5.9.3.5 Full-Charge Phase
        6. 5.9.3.6 Termination Current Detection
      4. 5.9.4  Anticollapse Loop and Supplement Mode
      5. 5.9.5  Battery Temperature Monitoring
      6. 5.9.6  Safety Timer and Charging Watchdog
      7. 5.9.7  Limit Registers
      8. 5.9.8  Battery Presence Detector
      9. 5.9.9  Indicator LED Driver
      10. 5.9.10 Supported Charging Sources
      11. 5.9.11 USB Suspend
      12. 5.9.12 Support for External Charging IC
      13. 5.9.13 Battery Charger Interrupts
        1. 5.9.13.1 Sources of the Interrupt
          1. 5.9.13.1.1 Charger Controller Interrupts
          2. 5.9.13.1.2 External Charger Interrupt
          3. 5.9.13.1.3 Internal Charger Interrupts
    10. 5.10 USB OTG
      1. 5.10.1 ID Line
      2. 5.10.2 VBUS Line
      3. 5.10.3 ADP on VBUS Line
    11. 5.11 Gas Gauge
      1. 5.11.1 Autocalibration
      2. 5.11.2 Auto-Clear and Pause
      3. 5.11.3 Dithering
      4. 5.11.4 Operation Guidelines
    12. 5.12 General-Purpose ADC
      1. 5.12.1 Real-Time Conversion Request (RT)
      2. 5.12.2 Asynchronous Conversion Request (SW)
      3. 5.12.3 BCM Internal Conversion Request
      4. 5.12.4 Calibration
    13. 5.13 Vibrator Driver and PWM Signals
    14. 5.14 Detection Features
    15. 5.15 Thermal Monitoring
      1. 5.15.1 Hot-Die Function
      2. 5.15.2 Thermal Shutdown
      3. 5.15.3 Temperature Monitoring with External NTC Resistor or Diode
    16. 5.16 I2C Interface
    17. 5.17 Secure Registers
    18. 5.18 Access Protocol
      1. 5.18.1 Single-Byte Access
      2. 5.18.2 Multiple-Byte Access to Several Adjacent Registers
    19. 5.19 Interrupts
  6. 6Recommended External Components
  7. 7Device and Documentation Support
    1. 7.1 Device Support
      1. 7.1.1 Development Support
      2. 7.1.2 Device Nomenclature
    2. 7.2 Community Resources
    3. 7.3 Trademarks
    4. 7.4 Electrostatic Discharge Caution
    5. 7.5 Export Control Notice
    6. 7.6 Glossary
    7. 7.7 Additional Acronyms
    8. 7.8 Detailed Revision History
  8. 8Mechanical Packaging and Orderable Information
    1. 8.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

4 Specifications

4.1 Absolute Maximum Ratings

Over operating free-air temperature range (unless otherwise noted)
PARAMETER MIN MAX UNIT
All battery and system supply related input balls (LDOs and SMPSs) and supply voltage: _IN, VDD, VSYS_BB, CHRG_VSYS, CHRG_VBAT –0.3 5.5 V
All SMPS-related input balls _FDBK –0.3 SMPSmax + 0.3 V
Backup battery supply voltage VBACKUP –0.3 5.5 V
I/O digital supply voltage VIO –0.3 VIOmax + 0.3 V
Battery charger supply voltage VBUS –0.3 20.0 V
Battery charger supply voltage VAC –0.3 20.0 V
Battery charger CHRG_PMID –0.3 20.0 V
Battery charger CHRG_SW, CHRG_BOOT –0.7 20.0 V
Voltage difference between CHRG_CSIN and CHRG_CSOUT inputs –7.0 7.0 V
Battery charger CHRG_VREF –0.3 6.5 V
Battery charger CHRG_DET_N –0.3 5.5 V
All other charger analog-related input balls, such as CHRG_CSIN, CHRG_CSOUT, and CHRG_LED_IN –0.3 5.5 V
Voltage on the USB OTG ID ball –0.3 5.5 V
Voltage on the VRTC GPADC balls: GPADC_IN0, GPADC_IN1, and GPADC_IN4 –0.3 VRTCmax + 0.3 V
Voltage on the VANA GPADC balls: GPADC_IN2, GPADC_IN3, GPADC_IN5, and GPADC_IN6 –0.3 VANAmax + 0.3 V
Voltage on the crystal oscillator OSC32KIN ball –0.3 VRTCmax + 0.3 V
Voltage on all other analog input balls such as GGAUGE_RESN and GGAUGE_RESP –0.3 VANAmax + 0.3 V
OTP memory supply voltage VPROG –0.3 20.0 V
Voltage on VRTC digital input balls –0.3 VRTCmax + 0.3 V
Voltage on VIO digital input balls –0.3 VIOmax + 0.3 V
Voltage on VBAT digital input balls –0.3 VBATmax + 0.3 V
Junction temperature range –45 150.0 °C
Peak output current on all terminals other than power resources –5.0 5.0 mA

4.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –65 150 °C
VESD Electrostatic discharge (ESD) performance: Human Body Model (HBM), per ANSI/ESDA/JEDEC JS001(1) All pins –1 1 kV
Charged Device Model (CDM), per JESD22-C101(2) –250 250 V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

4.3 Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)
PARAMETER MIN NOM MAX UNIT
All battery and system supply related input balls (LDOs and SMPSs) and supply voltage: _IN, VDD, VSYS_BB, CHRG_VSYS, CHRG_VBAT 2.5 3.8 4.8 V
All SMPS-related input balls _FDBK VOUTmin VOUTmax V
Backup battery supply voltage VBACKUP 1.9 3.2 4.8 V
I/O digital supply voltage VIO VIOmin VIO VIOmax V
Battery charger supply voltage VBUS 0 5.0 6.7 V
Battery charger supply voltage VAC 0 5.0 10.0 V
Battery charger CHRG_PMID 0 5.0 6.0 V
Battery charger CHRG_SW and CHRG_BOOT 0 5.0 6.0 V
Battery charger CHRG_VREF 0 5.0 6.5 V
Battery charger CHRG_DET_N 0 LDOUSB 4.8 V
All other charger analog-related input balls such as CHRG_CSIN, CHRG_CSOUT, and CHRG_LED_IN 0 3.8 4.8 V
Voltage on the USB OTG ID ball 0 LDOUSB LDOUSBmax V
Voltage on the VRTC GPADC balls GPADC_IN0, GPADC_IN1, and GPADC_IN4 VRTC VRTCmax V
Voltage on the VANA GPADC balls GPADC_IN2, GPADC_IN3, GPADC_IN5, and GPADC_IN6 VANA VANAmax V
Voltage on the crystal oscillator OSC32KIN ball VRTC VRTCmax V
Voltage on all other analog input balls such as GGAUGE_RESN and GGAUGE_RESP VANA VANAmax V
OTP memory supply voltage VPROG 8.0 10.0 V
Voltage on VRTC digital input balls VRTC VRTCmax V
Voltage on VIO digital input balls VIO VIOmax V
Voltage on VBAT digital input balls 0 3.8 4.8 V
Ambient temperature range –40 27 85 °C
Junction temperature (TJ) –40 27 125 °C
Storage temperature range –65 27 150 °C
Lead temperature (soldering, 10 seconds) 260 °C

4.4 Thermal Characteristics for YFF Package

NAME DESCRIPTION (°C/W)(1) AIR FLOW (m/s)(2)
JC Junction-to-case (top) 0.1 0.00
JB Junction-to-board 19.0 0.00
JA Junction-to-free air 37.7 0.00
PsiJT Junction-to-package top 0.7 0.00
PsiJB Junction-to-board 18.6 0.00
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards:
  • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
  • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
  • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
The maximum power, 0.4 W, is at 85°C ambient temperature.
(2) m/s = meters per second

4.5 Electrical Characteristics

Over operating free-air temperature range (unless otherwise noted)

4.5.1 Switched-Mode Regulators

Table 4-1 through Table 4-3 lists the SMPS electrical characteristics.

Table 4-1 SMPS1 Switched-Mode Regulator Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CI Input capacitor 1.5 4.7 µF
CO Output filter capacitor: (3-A mode) 11 22 29 µF
Output filter capacitor: (5-A mode) 22 44 58
Filter capacitor ESR f = [1 to 10] MHz 1 10 20
LO Filter inductor: (3-A mode) Single inductor 0.4 1.0 1.3 µH
Filter inductor: (5-A mode) Single inductor 0.4 1.0 1.3
Filter inductor: (5-A mode) Single inductor 0.2 0.5 0.65
Filter inductor: (5-A mode) Two inductors in parallel, total inductance (value of single inductor) 0.2 (0.4) 0.5 (1.0) 0.65 (1.3)
DCRL Filter inductor DC resistance 50 100
Filter inductor Q factor > 6 MHz 20
NMOS current limit (high side)
(3.0-A mode)
ILIMIT[1:0] = 00 (No current limitation) mA
ILIMIT[1:0] = 01 (2.0 A) 2800 3500 4200
ILIMIT[1:0] = 10 (2.5 A) 3500 4350 5150
ILIMIT[1:0] = 11 (3.0 A) 4100 5150 6200
NMOS current limit (high side)
(5-A mode)
ILIMIT[1:0] = 00 (No current limitation) mA
ILIMIT[1:0] = 01 (3.3 A) 3900 4800 5800
ILIMIT[1:0] = 10 (4.2 A) 4750 5900 7000
ILIMIT[1:0] = 11 (5.0 A) 5600 6900 8200
Input current limit under short-circuit conditions SW = 0 V 10 20 30 mA
VINF Input voltage (functional) VSYS max (VOUT + 0.4, 2.3) 5.5 V
VINP Input voltage (performance) VSYS max (VOUT + MinDOV, 2.5) 3.8 4.8 V
MinDOV Dropout voltage (performance)
(DOV = VIN – VOUT)
IOUT = 2.0 A 0.55 V
IOUT = 2.5 A 0.7
IOUT = 3.0 A 0.85
IOUT = 3.3 A 0.91
IOUT = 4.2 A 1.15
IOUT = 5.0 A 1.38
TDCOV Total DC output voltage accuracy
(3-A mode)

Includes voltage references, DC load/line regulations, process, and temperature
(–1.8%/+3.2%) VOUT > 0.75 V
(–2.8%/+4.2%) VOUT < 0.75 V
0.6 V
1.0 V
1.2 V
1.3 V
1.8 V
0.591
0.995
1.194
1.293
1.791
0.608
1.013
1.216
1.317
1.824
0.634
1.045
1.255
1.359
1.882
V
Total DC output voltage accuracy
(5-A mode)
Includes voltage references, DC load/line regulations, process, and temperature
(–2.4%/+3.2%) VOUT > 0.75 V
(–3.4%/+4.2%) VOUT < 0.75 V
0.6 V
1.0 V
1.2 V
1.35 V
1.5 V
0.587
0.989
1.187
1.334
1.483
0.608
1.013
1.216
1.367
1.519
0.634
1.045
1.255
1.411
1.568
V
IOUT Rated output current PWM mode: SMPS1 (3-A mode) 3000 mA
PWM mode: SMPS1 (5-A mode)(1) 5000
PFM mode 200
VOUT Output voltage, programmable Low range 0.6 1.3 V
High range 0.7 1.4
Step size 12.5 mV
Other selectable voltages 1.35
1.5
1.8
1.9
2.1
V
Extended voltage range, multiplier for nominal levels (enabled by OTP bit) 3.0476
RV Ripple voltage
Measured with 20-MHz LPF
PWM mode (3-A mode), ILOAD = 0 to IOUTmax 10 20 mVpp
PWM mode (5-A mode), ILOAD = 0 to IOUTmax 15 30
PFM mode, ∆VOUT/VOUT 1.9 % 3.8 % p-p
DCLDR DC load regulation, ∆VOUT/VOUT PWM mode, (3-A mode): IOUT = 0 to IOUTmax 0.25 % 0.6 %
PWM mode, (5-A mode): IOUT = 0 to IOUTmax 0.6 % 1.2 %
DCLNR DC line regulation, ∆VOUT/VOUT PWM mode, (3-A mode): VIN = VINPmin to VINPmax, IOUT = IOUTmax 0.8 % 1.6 %
PWM mode, (5-A mode): VIN = VINPmin to VINPmax, IOUT = IOUTmax 1.4 % 2.5 %
TLDR Transient load regulation
(3-A mode)
1.0 V
IOUT = 10 to 500 mA, tR/tF = 100 ns
12 20 mV
Transient load regulation
(5-A mode)
1.2 V
IOUT = 1.5 to 5.0 A, tR/tF = 1 µs
67 101 mV
TLNR Transient line regulation, (3-A mode), TLNR/VOUT VIN step = ±600 mV
Rise/fall time = 10 µs, VOUT < 0.75 V
0.7 % 1.4 %
VOUT ≥ 0.75 V 0.5 % 1.0 %
Transient line regulation, (5-A mode), TLNR/VOUT VIN step = ±600 mV
Rise/fall time = 10 µs, VOUT < 0.75 V
1.0 % 1.9 %
VOUT ≥ 0.75 V 0.8 % 1.5 %
tON Off to on IOUT = 200 mA, VOUT within accuracy limits 350 500 µs
tOFF On to off IOUT = 0, VOUT down to 10% x VOUT 250 500 µs
With 44 µF output capacitance: IOUT = 0, VOUT down to 10% x VOUT 800
RPD Pulldown resistor Off mode 3.8 7.5 15 Ω
SR Slew rate during rise time From 0.1 × VOUT to 0.9 × VOUT 30 150 mV/us
SRDVS Slew rate From VOUT = 0.6 V to VOUT = 1.3 V ±5%, ILOAD = ILOADmax, <SMPS>_CFG_STEP = 6 (minimum) 11 12.7 14 mV/µs
Output voltage settling time (normal mode) From VOUT = 0.6 V to VOUT = 1.3 V ±5%, ILOAD = ILOADmax 50 57 65 µs
Overshoot 100 mV
fSW Switching frequency 2.6 3 3.5 MHz
IQOFF Off ground current Off mode, T = 25°C 0.1 0.25 µA
Off mode 0.2 1
IQ On ground current PFM mode, no switching 25 µA
PWM mode
IOUT = 0 mA, VIN = 3.8 V
12 mA
(1) Lifetime is 75,000 power on hours (POH) at maximum junction temperature of 125°C and VOUT ≤ 1.4 V and 50,000 POH at maximum junction temperature of 125°C and VOUT > 1.4 V.

Table 4-2 SMPS2 Switched-Mode Regulator Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CI Input capacitor 0.6 4.7 µF
CO Output filter capacitor: (Option 1) 4 10 15 µF
Output filter capacitor: (Option 2) 11 22 29
Filter capacitor ESR f = [1 to 10] MHz 1 10 20
LO Filter inductor: (Option 1) 0.4 1.0 1.3 µH
Filter inductor: (Option 2) 0.2 0.5 0.65
DCRL Filter inductor DC resistance 50 100
Filter inductor Q factor > 6 MHz 20
PMOS current limit (high side) ILIMIT[1:0] = 00 (No current limitation) mA
ILIMIT[1:0] = 01 (1.4 A) 2050 2550 3100
ILIMIT[1:0] = 10 (1.8 A) 2400 3000 3500
ILIMIT[1:0] = 11 (2.5 A) 3100 3800 4400
Input current limit under short-circuit conditions SW = 0 V 10 20 30 mA
VINF Input voltage (functional) VSYS max (VOUT + 0.4, 2.3) 5.5 V
VINP Input voltage (performance) VSYS max (VOUT + MinDOV, 2.5) 3.8 4.8 V
MinDOV Dropout voltage (performance)
(DOV = VIN – VOUT)
IOUT = 0.5 A 0.3(1) V
IOUT = 0.8 A 0.5
IOUT = 1.0 A 0.6
IOUT = 1.2 A 0.7
IOUT = 1.5 A 0.9
IOUT = 1.8 A 1.1
IOUT = 2.0 A 1.2
IOUT = 2.2 A 1.3
IOUT = 2.5 A (Option 1) 1.5
IOUT = 2.5 A (Option 2) 1.7
TDCOV Total DC output voltage accuracy
(Option 1)
Includes voltage references, DC load/line regulations, process, and temperature
(–1.2%/+2.4%) VOUT > 0.75 V
0.6 V
1.1 V
1.225 V
1.3 V
1.35 V
1.8 V
1.9 V
2.1 V
0.601
1.101
1.226
1.301
1.352
1.801
1.902
2.101
0.608
1.114
1.241
1.317
1.368
1.823
1.925
2.127
0.623
1.141
1.271
1.349
1.401
1.867
1.971
2.178
V
Total DC output voltage accuracy
(Option 2)
Includes voltage references, DC load/line regulations, process, and temperature
(–1.7%/+2.4%) VOUT > 0.75 V
0.6 V
1.1 V
1.225 V
1.3 V
1.35 V
1.8 V
1.9 V
2.1 V
0.598
1.095
1.220
1.295
1.345
1.792
1.892
2.091
0.608
1.114
1.241
1.317
1.368
1.823
1.925
2.127
0.623
1.141
1.271
1.349
1.401
1.867
1.971
2.178
V
IOUT Rated output current PWM mode 2500 mA
PFM mode 200
VOUT Output voltage, programmable Low range 0.6 1.3 V
High range 0.7 1.4
Step size 12.5 mV
Other selectable voltages 1.35
1.5
1.8
1.9
2.1
V
Extended voltage range, multiplier for nominal levels (enabled by OTP bit) 3.0476
RV Ripple voltage
(Option 1)
Measured with 20-MHz LPF
PWM mode: IOUT = 0 to 2.2 A 5 10 mVpp
PWM mode: IOUT = 0 to IOUTmax 5 15 mVpp
PFM mode, ∆VOUT/VOUT 1.0 % 2.0 % p-p
Ripple voltage
(Option 2)
Measured with 20-MHz LPF
PWM mode: ILOAD = 0 to IOUTmax 15 25 mVpp
PFM mode, VOUT > 0.75 V, ∆VOUT/VOUT 1.0 % 2.0 % p-p
PFM mode, VOUT < 0.75 V, ∆VOUT/VOUT 1.5 % 3.0 %
DCLDR DC load regulation, ∆VOUT/VOUT PWM mode, (Option 1): IOUT = 0 to IOUTmax 0.25 % 0.5 %
PWM mode, (Option 2): IOUT = 0 to IOUTmax 0.25 % 1.2 %
DCLNR DC line regulation, ∆VOUT/VOUT PWM mode, VIN = VINPmin to VINPmax, IOUT = IOUTmax 0.8 % 1.6 %
TLDR Transient load regulation, ∆VOUT/VOUT
(Option 1)
VOUT < 0.75 V
IOUT = 0 to 150 mA, tR/tF = 100 ns
IOUT = 50 to 250 mA, tR/tF = 100 ns
IOUT = 350 to 800 mA, tR/tF = 100 ns
3.3 % 4.2 %
VOUT ≥ 0.75 V
IOUT = 0 to 150 mA, tR/tF = 100 ns
IOUT = 50 to 250 mA, tR/tF = 100 ns
IOUT = 350 to 800 mA, tR/tF = 100 ns
2.8 % 3.6 %
Transient load regulation, ∆VOUT/VOUT
(Option 2)
VOUT < 0.75 V
IOUT = 0 to 150 mA, tR/tF = 100 ns
IOUT = 50 to 250 mA, tR/tF = 100 ns
IOUT = 350 to 800 mA, tR/tF = 100 ns
1.5 % 3.0 %
VOUT ≥ 0.75 V
IOUT = 0 to 150 mA, tR/tF = 100 ns
IOUT = 50 to 250 mA, tR/tF = 100 ns
IOUT = 350 to 800 mA, tR/tF = 100 ns
1.3 % 2.5 %
TLNR Transient line regulation, TLNR/VOUT VIN step = ±600 mV
Rise/fall time = 10 µs, VOUT < 0.75 V
0.7 % 1.4 %
VOUT ≥ 0.75 V 0.5 % 1.0 %
tON Off to on IOUT = 200 mA, VOUT within accuracy limits 350 500 µs
tOFF On to off IOUT = 0, VOUT down to 10% x VOUT 250 500 µs
RPD Pulldown resistor Off mode 3.8 7.5 15 Ω
SR Slew rate during rise time From 0.1 × VOUT to 0.9 × VOUT 30 150 mV/µs
SRDVS Slew rate From VOUT = 0.6 V to VOUT = 1.3 V ±5%, ILOAD = ILOADmax, <SMPS>_CFG_STEP = 6 (minimum) 11 12.7 14 mV/µs
Output voltage settling time (normal mode) From VOUT = 0.6 V to VOUT = 1.3 V ±5%, ILOAD = ILOADmax 50 57 65 µs
Overshoot 100 mV
fSW Switching frequency 4.5 6 6.6 MHz
IQOFF Off ground current Off mode, T = 25°C 0.1 0.25 µA
Off mode 0.2 1
IQ On ground current PFM mode, no switching 35 50 µA
PWM mode,
IOUT = 0 mA, VIN = 3.8 V
12 mA
(1) Minimum dropout voltage of 0.5 V is needed to ensure PFM operation with VOUT > 2.1 V.

Table 4-3 SMPS3, SMPS4, SMPS5 Switched-Mode Regulators Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
CI Input capacitor 0.6 4.7 µF
CO 4 10 15 µF
Filter capacitor ESR f = [1 to 10] MHz 1 10 20
LO Filter inductor 0.4 1.0 1.3 µH
DCRL Filter inductor DC resistance 50 100
Filter inductor Q factor > 6 MHz 20
PMOS current limit (high side) ILIMIT[1:0] = 00 (No current limitation) mA
ILIMIT[1:0] = 01 1300 1620 2000
ILIMIT[1:0] = 1X 1640 2050 2520
Input current limit under short-circuit conditions SW = 0 V 10 20 30 mA
VINF Input voltage (functional) VSYS max (VOUT + 0.4, 2.3) 5.5 V
VINP Input voltage (performance) VSYS max (VOUT + MinDOV, 2.5) 3.8 4.8 V
MinDOV Dropout voltage (performance)
(DOV = VIN – VOUT)
IOUT = 0.5 A 0.41(1) V
IOUT = 0.8 A 0.65
IOUT = 1.0 A 0.9
TDCOV Total DC output voltage accuracy
Includes voltage references, DC load/line regulations, process, and temperature
(–1.2%/+2.4%) VOUT > 0.75 V
0.6 V
1.1 V
1.225 V
1.3 V
1.35 V
1.8 V
1.9 V
2.1 V
0.601
1.101
1.226
1.301
1.352
1.801
1.902
2.101
0.608
1.114
1.241
1.317
1.368
1.823
1.925
2.127
0.623
1.141
1.271
1.349
1.401
1.867
1.971
2.178
V
IOUT Rated output current PWM mode 1100 mA
PFM mode 200
VOUT Output voltage, programmable Low range 0.6 1.3 V
High range 0.7 1.4
Step size 12.5 mV
Other selectable voltages 1.35
1.5
1.8
1.9
2.1
V
Extended voltage range, multiplier for nominal levels (enabled by OTP bit) 3.0476
RV Ripple voltage
Measured with 20-MHz LPF
PWM mode: ILOAD = 0 to IOUTmax 5 10 mVpp
PFM mode, ∆VOUT/VOUT 1.0 % 2.0 % p-p
DCLDR DC load regulation, ∆VOUT/VOUT PWM mode: IOUT = 0 to IOUTmax 0.25 % 0.5 %
DCLNR DC line regulation, ∆VOUT/VOUT PWM mode, VIN = VINPmin to VINPmax, IOUT = IOUTmax 0.8 % 1.6 %
TLDR Transient load regulation, ∆VOUT/VOUT VOUT < 0.75 V
IOUT = 0 to 150 mA, tR/tF = 100 ns
IOUT = 50 to 250 mA, tR/tF = 100 ns
IOUT = 150 to 400 mA, tR/tF = 100 ns
2.0 % 3.0 %
VOUT ≥ 0.75 V
IOUT = 0 to 150 mA, tR/tF = 100 ns
IOUT = 50 to 250 mA, tR/tF = 100 ns
IOUT = 150 to 400 mA, tR/tF = 100 ns
1.0 % 1.5 %
TLNR Transient line regulation, TLNR/VOUT VIN step = ±600 mV
Rise/fall time = 10 µs, VOUT < 0.75 V
0.7 % 1.4 %
VOUT ≥ 0.75 V 0.5 % 1.0 %
tON Off to on IOUT = 200 mA, VOUT within accuracy limits 350 500 µs
tOFF On to off IOUT = 0, VOUT down to 10% x VOUT 250 500 µs
RPD Pulldown resistor Off mode 3.8 7.5 15 Ω
SR Slew rate during rise time From 0.1 × VOUT to 0.9 × VOUT 30 150 mV/µs
SRDVS Slew rate
SMPS5
From VOUT = 0.6 V to VOUT = 1.3 V ±5%, ILOAD = ILOADmax, <SMPS>_CFG_STEP = 6 (minimum) 11 12.7 14 mV/µs
Output voltage settling time (normal mode) SMPS5 From VOUT = 0.6 V to VOUT = 1.3 V ±5%, ILOAD = ILOADmax 50 57 65 µs
Overshoot 100 mV
fSW Switching frequency 5.4 6 6.6 MHz
IQOFF Off ground current Off mode, T = 25°C 0.1 0.25 µA
Off mode 0.2 1
IQ On ground current PFM mode, no switching 35 50 µA
PWM mode,
IOUT = 0 mA, VIN = 3.8 V
8 mA
(1) Minimum dropout voltage of 0.5 V is needed to ensure PFM operation with VOUT > 2.1 V.

4.5.2 LDO Regulators

Table 4-4 lists the LDO regulators electrical characteristics.

Over operating free-air temperature range (unless otherwise noted)

Table 4-4 LDO Regulators Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LDO Regulators
CIN Input filtering capacitor Connected from LDO_IN to GND. Shared input tank capacitance (depending on platform requirements and power tree) 0.3 2.2 µF
Connected from CHRG_PMID to GND 0.9 4.7 6.5
COUT Output filtering capacitor Connected from LDO output to GND 0.6 2.2 2.7 µF
RESR Filtering DC capacitor ESR < 100 kHz 20 100 600
Filtering AC capacitor ESR [1 to 10] MHz 1 10 20
VINF Input voltage (functional) VRTC, VBRTC: VSYS during ACTIVE, SLEEP and WAIT-ON state 2.3 5.5 V
VRTC, VBRTC: VSYS during BACKUP state 1.9 3.1
VRTC, VBRTC: VBACKUP during BACKUP state 1.9 5.5
LDO1_IN, LDO2_IN, LDO3_IN, LDO4_IN, LDO5_IN, LDO6_IN, LDO7_IN, LDOLN_IN (VOUT ≥ 1.5 V) TDCOV + DV – 0.2 5.5
LDO1_IN, LDO2_IN, LDO3_IN, LDO4_IN, LDO5_IN, LDO6_IN, LDO7_IN, LDOLN_IN (VOUT < 1.5 V) 1.8 5.5
VANA 2.3 5.5
LDOUSB: Supplied from VSYS 3.5 5.5
LDOUSB: Supplied from CHRG_PMID 3.5 6.8
VINP Input voltage (performance) VRTC, VBRTC 2.5 3.8 4.8 V
VANA 2.5 3.8 4.8
LDO1_IN, LDO2_IN, LDO3_IN, LDO4_IN, LDO5_IN, LDO6_IN, LDO7_IN, LDOLN_IN (VOUT ≥ 1.5 V) TDCOV + DV 3.8 4.8
LDO1_IN, LDO2_IN, LDO3_IN, LDO4_IN, LDO5_IN, LDO6_IN, LDO7_IN, LDOLN_IN (VOUT < 1.5 V) 1.8 3.8 4.8
LDOUSB: from VSYS 3.6 3.8 4.8
LDOUSB: from CHRG_PMID, OVV protection 4.3 5.0 5.5
TDCOV Total DC output voltage accuracy
Includes voltage references, DC load/line regulations, process and temperature
(–1.7%/1.2%), _IN ≥ 2.5 V
(–3.0%/1.2%), _IN < 2.5 V and VOUT < 1.5 V
(except VRTC, VBRTC and VANA)
1.0 V, _IN ≥ 2.5 V
1.0 V, _IN < 2.5 V
1.2 V, _IN ≥ 2.5 V
1.2 V, _IN < 2.5 V
1.3 V, _IN ≥ 2.5 V
1.3 V, _IN < 2.5 V
1.8 V
1.9 V
2.0 V
2.1 V
2.2 V
2.3 V
2.4 V
2.5 V
2.75 V
2.8 V
2.9 V
3.0 V
3.3 V
3.3 V (LDOUSB)
1.001
0.987
1.202
1.185
1.301
1.283
1.801
1.902
2.002
2.102
2.203
2.302
2.402
2.503
2.753
2.802
2.903
3.003
3.304
3.245
1.018
1.018
1.222
1.222
1.323
1.323
1.832
1.934
2.036
2.138
2.240
2.341
2.443
2.545
2.800
2.850
2.952
3.054
3.359
3.301
1.030
1.030
1.236
1.236
1.339
1.339
1.854
1.957
2.060
2.163
2.266
2.369
2.472
2.575
2.834
2.884
2.987
3.090
3.399
3.341
V
VBRTC
VRTC
VANA
1.550
1.801
2.102
1.805
1.832
2.138
1.854
1.890
2.163
V
DV Dropout voltage
_IN ≥ 2.3 V
LDO6, LDOLN: IOUT = IOUTmax 150 mV
LDO5, LDO7: IOUT = 50 mA 140
LDOUSB 200
LDO1, LDO2, LDO3, LDO4, LDO5, LDO7, VRTC: VINPmin = TDCOV + DV 300
Dropout voltage
_IN ≥ 1.8 V
LDO6, LDOLN: IOUT = IOUTmax 250
LDO1, LDO2, LDO3, LDO4, LDO5, LDO7: VINPmin = TDCOV + DV 400
IOUT Rated output current VBRTC 1.5 mA
VANA, VRTC 25
LDOLN 50
LDO1: VOUT ≤ 2.75 V 50
LDO1: VOUT ≥ 2.8 V 80
LDOUSB 100
LDO2, LDO3, LDO4, LDO5, LDO6, LDO7 200
LDO6 (DV = 300 mV, VOUT ≥ 1.8 V) 250
VOUT Output voltage, programmable
(except VRTC, VBRTC and VANA)
Range 1.0 3.3 V
Step size 100 mV
Additional selectable voltage level 2.75 V
ILIMIT Load current limitation VANA, VRTC, LDO1, LDOLN 100 250 400 mA
LDOUSB 150 250 600
LDO2, LDO3, LDO4, LDO5, LDO6, LDO7 400 650 900
DCLDR DC load regulation, ∆VOUT / VOUT IOUT = 0 to IOUTmax 4 10 mV
DCLNR DC line regulation, ∆VOUT / VOUT VIN = VINPmin to VINPmax
IOUT = IOUTmax
0.1 % 0.2 %
tON Turn-on time IOUT = 0 , VOUT = 0.1 V up to VOUTmin 100 500 µs
tOFF Turn-off time (except VRTC and VBRTC) IOUT = 0, VOUT down to 10% x VOUT 250 500 µs
RPD Pulldown resistor (except VRTC and VBRTC) Off mode 40 60 80 Ω
PSRR Power supply ripple rejection
(Except LDO1)
f = 217 Hz, IOUT = IOUTmax 45 90 dB
f = 50 kHz, IOUT = IOUTmax 35 45
f = 1 MHz, IOUT = IOUTmax 20 35
Power supply ripple rejection
(LDO1: DV > 550 mV)
f = 217 Hz, IOUT = IOUTmax 45 90
f = 50 kHz, IOUT = IOUTmax 35 45
f = 1 MHz, IOUT = IOUTmax 20 35
IQOFF Off ground current Off mode, T = 25°C 0.05 0.15 µA
Off mode 0.2 1
IQ0 On ground current IOUT = 0, (except LDOLN, LDOUSB, VANA, VRTC, VBRTC) 12 18 29 µA
IOUT = 0, LDOLN 75 150 175
IOUT = 0, LDOUSB, from VSYS, ACTIVE state 60
IOUT = 0, LDOUSB, from VSYS, SLEEP state 40
IOUT = 0, LDOUSB, from CHRG_PMID 20
αQ On ground current coefficient
On mode, IQOUT = IQ0 + αQ × IOUT
IOUT < 100 µA 4 %
100 µA < IOUT < 1 mA 2 %
IOUT > 1 mA 1 %
TLDR Transient load regulation, ∆VOUT / VOUT On mode, IOUT = 10 mA to IOUTmax / 2,
tR = tF = 1 µs
–25 28 mV
On mode, IOUT = 100 µA to IOUTmax / 2,
tR = tF = 1 µs
–50 33
TLNR Transient line regulation, ∆VOUT / VOUT (except LDO6) VIN step = 600 mVPP, tR = tF = 10 µs 0.25 % 0.6 %
Transient line regulation, ∆VOUT / VOUT (LDO6) VIN step = 600 mVPP, tR = tF = 10 µs 0.25 % 1.0 %
Vnoise Noise (except LDOLN) 100 Hz < f < 10 kHz 5000 8000 nV/√Hz
10 kHz < f < 100 kHz 1250 2500
100 kHz < f < 1 MHz 150 300
f > 1 MHz 250 500
Noise (LDOLN) 100 Hz < f < 5 kHz 200 400 nV/√Hz
5 kHz < f < 400 kHz 62 125
400 kHz < f < 10 MHz 25 50
LDO3 When Used As Vibrator Driver
Output regulated output range Configurable step of 100 mV 1.0 3.3 V
COUT Output filtering capacitor Connected between LDO3 output and GND 0.6 2.2 2.7 µF
LVibrator Vibrator load inductance 70 350 700 µH
RVibrator Vibrator load resistance 15 40 50 Ω

4.5.3 Reference Generator

Table 4-5 lists the reference generator electrical characteristics.

Table 4-5 Reference Generator Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
COUT Filtering capacitor Connected between VBG and REFGND 30 100 150 nF
RBias Biasing resistor (±1%) at 25°C Connected between IREF and REFGND 505 510 515
Biasing resistor (±1%) temperature coefficient 50 ppm/°C
VINP Input voltage VINP Performance 1.9 3.8 5.5 V
IQ Ground current 15 20 40 µA
tstartup Start-up time 1 3 ms

4.5.4 Crystal Oscillator

Table 4-6 lists the crystal oscillator electrical characteristics.

Table 4-6 Crystal Oscillator Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Crystal Characteristics
fosc Crystal frequency at specified load capacitor value 32768 Hz
Crystal tolerance T = 25°C –20 0 20 ppm
B Secondary temperature coefficient –0.04 –0.035 –0.03 ppm/°C2
RESR Crystal series resistor at fundamental frequency 90
DL Operating drive level 0.1 0.5 µW
CL Crystal load capacitor (according to crystal data sheet) 12.5 pF
Cshunt Shunt capacitor 1.4 2.6 pF
Q Quality factor 8000 80000
Crystal Oscillator External Components
VRTC power supply external filtering capacitor OSC32KCAP 0.6 2.2 2.7 µF
CLoad Load capacitors on OSC32KIN and OSC32KOUT
External capacitor includes the parasitics of PCB
Normal and high-performance (HP) mode:
External capacitor
Internal capacitance

9
8

15
10

17
12
pF
Backup mode:
External capacitor
Internal capacitance

9
0

15
0

17
0
Frequency accuracy (taking into account crystal tolerance and internal load capacitors variation) at 25°C, normal and HP modes –30 0 30 ppm
at 25°C, backup mode –80 0 80
Oscillator capacitor ratio: COSC32KIN/ COSC32KOUT 1
Square Wave Input Clock for Bypass
Input bypass clock
OSC32KIN input
OSC32KOUT floating
Frequency 32768 Hz
Duty cycle 40 50 % 60 %
Rise and fall time (10% to 90%) 10 20 ns
Setup time 1 ms
Crystal Oscillator Characteristics
Frequency temperature coefficient Oscillator contribution in normal and HP modes (not including the crystal variations) ±0.5 ppm/°C
SSB phase noise at a 1-kHz offset from the carrier HP mode OSC_HPMODE = 1 –125 dBc/Hz
SSB phase noise at a 100-Hz offset from the carrier HP mode OSC_HPMODE = 1 –105 dBc/Hz
Cycle jitter short term (peak-to-peak) Normal mode OSC_HPMODE = 0 25 ns
Integrated jitter (HP mode) 20 Hz to 20 kHz flat 0.86 nsRMS
80 Hz to 20 kHz flat 0.43
Tstartup Startup time for power on Shunt capacitor ≤ 1.4 pF 300 ms
Shunt capacitor 1.4 to 2.6 pF 400
Sixth harmonic mode rejection RS32/RS200 Oscillator ratio between negative resistance at 32 kHz and negative resistance at 200 kHz (sixth harmonic) 10
IQ Ground current Crystal mounted:
- Backup mode (at 25°C)
- Normal mode: OSC_HPMODE = 0
- HP mode: OSC_HPMODE = 1
- Start-up (boost) phase

1.5
3
5
20
µA
Duty cycle CLK32KAO/CLK32KG Logic output signal 40 50 % 60 %
TRise,TFall Rise and fall time (10% to 20%) CLK32KAO/CLK32KG 5 20 100 ns

4.5.5 RC Oscillators

Table 4-7 lists the RC oscillators electrical characteristics.

Table 4-7 RC Oscillators Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
32-kHz RC Oscillator
fOUT Output frequency 32768 Hz
Output frequency accuracy After trimming –10 % 10 %
Cycle jitter (RMS) 10 %
D Output duty cycle 40 % 50 % 60 %
Settling time 150 µs
IQ Active current consumption 4 8 µA
IQOFF Power-down current 30 nA
6-MHz RC Oscillator
fOUT Output frequency 6 MHz
Output frequency accuracy After trimming –10 % 0 % 10 %
Cycle jitter (RMS) 5 %
D Output duty cycle 40 % 50 % 60 %
Settling time 5 µs
IQ Active current consumption 35 70 µA
IQOFF Power-down current 50 nA

4.5.6 CLK32KAUDIO Buffer

Table 4-8 lists the CLK32AUDIO buffer electrical characteristics.

Table 4-8 CLK32KAUDIO Buffer Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Settling time 25 50 µs
IQ Active current consumption 5 7 10 µA
IQOFF Power down current 30 nA
VHOUT High output level VRTC supply 1.832 V
Duty cycle degradation contribution –2 % 2 %
Integrated jitter contribution 20 Hz to 20 kHz flat
80 Hz to 20 kHz flat
25
10
50
20
psRMS
CLoad External output load 5 10 50 pF
TRise,
TFall
Output rise/fall time Output load = 10 pF 5 7.5 10 ns
IOUT Output drive strength VOL = 0.2 V –1 –2 mA
VOH = VHOUT – 0.2 V 1 2

4.5.7 Backup Battery Charger

Table 4-9 lists the backup battery charger electrical characteristics.

Table 4-9 Backup Battery Charger Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Backup Battery Charger
VBACKUP to GPADC input attenuation VBACKUP from 2.4 to 4.5 V 0.2 0.25 0.35 V/V
ICharge Backup battery charging current VBACKUP = 0 to 2.6 V
BB_CHG_EN = 1
350 650 900 µA
VCharge End backup battery charging voltage: VBBCHGEND IVBACKUP = –10 µA, BB_SEL = 00 (VSYS > 3.2 V) 2.90 3.00 3.10 V
IVBACKUP = –10 µA, BB_SEL = 01 (VSYS > 2.7 V) 2.42 2.52 2.60
IVBACKUP = –10 µA, BB_SEL = 10 (VSYS > 3.35 V) 3.05 3.15 3.25
IVBACKUP = –10 µA, BB_SEL = 11 (VSYS > 2.5 V) VSYS – 0.3 VSYS
IVBACKUP = –10 µA, BB_SEL = XX (VSYS < 2.5 V) VSYS – 0.2 VSYS
IQ Current consumption BB_CHG_EN = 1, IVBACKUP = 0 µA 10 µA
RSeries Backup battery serial resistance Without additional capacitor in parallel 20 Ω
With additional capacitor in parallel 1500
COUT Capacitance of the additional capacitor (C44) 2.0 4.7 µF

4.5.8 Switched-Mode System Supply Regulator

Table 4-10 lists the system supply regulator electrical characteristics.

Table 4-10 System Supply Regulator Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Switched-Mode System Supply Regulator
CVBUS VBUS capacitor (connected between VBUS and PGND) 0 V < VBUS < 5.25 V 1.2 4.7 6.5 µF
0 V < VBUS < 6 V 0.9 4.7 6.5 µF
ESR (1 to 10 MHz) 1 10 20
CPMID PMID capacitor (connected between PMID and PGND) 0 V < VBUS < 5.25 V 1.2 4.7 6.5 µF
0 V < VBUS < 6 V 0.9 4.7 6.5
ESR (1 to 10 MHz) 1 10 20
CCSOUT Output capacitor (connected between CSOUT and PGND) 0 V < CSOUT < 4.5 V 3 10 15 µF
ESR (1 to 10 MHz) 20
CCSIN Output capacitor (connected between CSIN and PGND) 0 V < CSIN < 4.5 V 20 100 150 nF
ESR (100 kHz) 400
CBOOT Bootstrap capacitor (connected between BOOT and SW) 50 100 200 nF
ESR (9 MHz) 200
CVREF Reference voltage capacitor (connected between VREF and PGND) 0 V < VREF < 6.5 V 0.7 2.2 2.86 µF
ESR (1 to 10 MHz) 20
L Coil (option 1), (connected between SW and CSIN) Inductance 0.7 1 1.45 µH
DCR 130
R9 Sense resistor (connected between CSIN and CSOUT) Short circuited with power path –1% 68 mΩ +1%
Maximum output average current CHRG_SW 1.5 1.545 A
IVBUS VBUS supply current control VBUS > VBUSmin, PWM switching 10 mA
VBUS > VBUSmin, PWM not switching 5
0°C < TJ < 85°C, HZ_MODE= 1, 32S mode 30 µA
IVBUS_LEAK Leakage current from battery to VBUS ball 0°C < TJ < 85°C, CSOUT = 4.2 V, Hi-Z mode 5 µA
VSYS Output voltage for preconditioning/precharge 3.8 V
Output voltage for full charge mode VBAT + ΔLIN V
Nominal output voltage, programmable 20-mV steps 3.50 3.54 4.76 V
Voltage regulation accuracy (except full charge mode), IOUT < 200 mA T = 25°C –0.5 % 0.5 %
0°C < T < 125°C –1.0 % 1.0 %
VICHRG Nominal output current Without power Path, programmable With R9 = 68 mΩ 300 1500 mA
Current accuracy IOCHARGE ≤ 500 mA –5 % 5 %
IOCHARGE ≥ 600 mA –3 % 3 %
VAC_DET VAC detection VAC_DET rising edge threshold 2.9 3.4 3.6 V
VAC_DET falling edge threshold 2.7 3.0 3.4
Hysteresis 100 135 350 mV
VBUS_DET VBUS detection VBUS_DET rising edge threshold 2.9 3.4 3.6 V
VBUS_DET falling edge threshold 2.8 3.0 3.35
Hysteresis 50 135 170 mV
VAC/VBUS detection deglitch time 25 30 36 ms
VVBUS_MIN VBUS input voltage lower limit Input power source detection for battery charging, threshold for falling edge 3.6 3.8 4.0 V
Deglitch time for VBUS rising above VVBUS_MIN Rising voltage, 2-mV overdrive, tR = 100 ns 4 5 6 ms
Hysteresis for VVBUS_MIN Input voltage rising 100 200 mV
VBUS collapse threshold Input current is automatically reduced, programmable, 80-mV steps 4.2 4.76 V
VBUS DPM loop kick-in threshold accuracy –2 % 2 %
tint Detection interval Input power source detection 1.7 2 2.6 s
IIN_LIMIT VBUS input current-limiting threshold Programmable 100 2250 mA
Accuracy –15 % –9 % –1 %
System Supply Regulator, Sleep Comparator (To Detect USB Unplug)
VSLP SLEEP state entry threshold VBUS above CSOUT, 2.3 V ≤ CSOUT ≤ VOREG, VBUS falling 0 40 100 mV
VSLP_ EXIT SLEEP state exit hysteresis 2.3 V ≤ CSOUT ≤ VOREG 140 200 260 mV
Deglitch time for VBUS rising above VSLP + VSLP_EXIT Rising voltage, 2-mV overdrive, tR = 100 ns 31 32 34 ms
System Supply Regulator, Battery Detection (Enabled by OTP Bit)
IDETECT battery detection current before charge done (sink current) Begins after termination detected, CSOUT ≤ VOREG –0.45 mA
TDETECT battery detection time 215 262 335 ms
System Supply Regulator, PWM
Internal top reverse blocking MOSFET on-resistance 100 200
Internal top N-channel switching MOSFET on-resistance Measured from PMID to SW 120 200
Internal bottom N-channel MOSFET on-resistance Measured from SW to PGND 120 240
fOSC Oscillator frequency 2.7 3 3.3 MHz
DMIN Minimum duty cycle 0 %
DMAX Maximum duty cycle 93 %
Boost Mode for VBUS Voltage Generation
VBUS_B Boost output voltage (to pin VBUS) 2.7 V < CHRG_CSOUT < 4.5 V 4.75 5.10 5.25 V
IBO1 Rated output current of the boost, combination of VBUS output current and LDOUSB input current from CHRG_PMID node VBUS_B = 5.10 V,
2.7 V < CHRG_CSOUT < 4.5 V
300 mA
Rated LDOUSB input current from CHRG_PMID node VBUS_B = 5.10 V,
2.7 V < CHRG_CSOUT < 4.5 V
100 mA
IBLIMIT Cycle-by-cycle current limit for boost VBUS_B = 5.10 V,
2.7 V < CHRG_CSOUT < 4.5 V
1.0 A
VBUSOVP Overvoltage protection threshold for boost (VBUS pin) Threshold over VBUS to turn off converter during boost 5.8 6.0 6.2 V
Hysteresis VBUS falling from above VBUSOVP 125 mV
Efficiency CSOUT = 3.6 V, IBO = 200 mA, TA = 25°C, synchronous operation 85 %
IDDQ Quiescent current 5 mA
VSYSMAX Maximum system voltage for boost (CSOUT pin) VCSOUT rising edge during boost 4.75 4.9 5.05 V
Hysteresis VCSOUT falling from above VSYSMAX 200 mV
VSYSMIN Minimum system voltage for boost (CSOUT pin) 2.5 V
Boost output resistance at HP mode (from VBUS to PGND) HZ_MODE = 1 60
System Supply, Protection, Current Consumptions
VOVP_ VBUS VBUS OVP threshold voltage Threshold over VBUS to turn off converter during charge 6.3 6.5 6.7 V
Hysteresis VBUS falling from above VOVP_VBUS 140 mV
VOVP_ VSYS System voltage OVP threshold voltage, VCSOUT threshold over VOREG to turn off the regulator during operation Power Path mode and DCDC in PWM mode 130 % 133 % 136 %
Other cases 110 % 117 % 121 %
Hysteresis Lower limit for VCSOUT falling from above VOVP_VSYS 11 %
VOVP_ VBAT VBAT OVP threshold voltage Threshold over VBAT to turn off battery charging 110 % 117 % 121 %
Hysteresis 11 %
Debounce time for falling edge 3 ms
ILIMIT Cycle-by-cycle current limit for charge BUCK_HSLIMI = 0: 2.55 A 2.10 2.55 3.30 A
BUCK_HSLIMI = 1: 1.90 A default 1.50 1.90 2.60
VSYS_ SHORT Short-circuit voltage threshold CSOUT rising (default) 2.00 2.10 2.20 V
Hysteresis CSOUT falling from above VSYS_SHORT 100 mV
ISYS_ SHORT Short-circuit detection current CSOUT ≤ VSYS_SHORT 20 30 40 mA
IVBUS VBUS input current VBUS = 9.7 V, OVP active 4 mA
Regulator thermal shutdown Temperature threshold, TCHRGSHTDWN 148 °C
Hysteresis, TCHRGHYS 10
Analog thermal regulation loop Threshold to start limiting the current, TCF,
IVBUS = 1.5 A
130 °C
Threshold for 0 A current level TCHRGSHTDWN – 5
Current consumption of the linear charger and supplement mode control System supply regulator enabled, charger enabled 1.3 mA
System supply regulator enabled, charger disabled 0.9
System supply regulator disabled, system switch forced to connect 1 µA

4.5.9 Battery Charger

Table 4-11 lists the battery charger electrical characteristics.

Table 4-11 Battery Charger Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Battery Charger
R2 Sense resistor of linear charging loop(1) 15-mΩ resistor allows maximum of 2.0-A charging current
20-mΩ resistor allows maximum of 1.5-A charging current
15 20
IBAT_SHORT Preconditioning current (for short-circuit detection) VSYS = 3.6 V, VBAT ≤ VBAT_SHORT 13 20 27 mA
VSYS = 3.8 V, VBAT ≤ VBAT_SHORT 20 30 40
VBAT_SHORT Preconditioning positive threshold voltage Programmable: 2.1, 2.45, and 2.8-V voltage levels 2.1 2.8 V
Hysteresis 50 100 150 mV
Debounce time 1 ms
VICHRG_PC Linear precharge current, programmable VBAT_SHORT < VBAT < VBAT_FULLCHRG
100-mA steps
100 400 mA
Accuracy, without autocalibration –75 % 0 %
Accuracy, with autocalibration ICHARGE < 300 mA –10 % +10 %
300 mA ≤ ICHARGE ≤ 400 mA –5 % +5 %
VBAT_FULLCHRG Threshold level, low to high transition VBAT_FULLCHRG = 000 2.61 2.65 2.73 V
VBAT_FULLCHRG = 001 2.705 2.75 2.835
VBAT_FULLCHRG = 010 2.805 2.85 2.94
VBAT_FULLCHRG = 011 2.905 2.95 3.04
VBAT_FULLCHRG = 100 3.00 3.05 3.145
VBAT_FULLCHRG = 101 3.10 3.15 3.245
VBAT_FULLCHRG = 110 3.20 3.25 3.35
VBAT_FULLCHRG = 111 3.295 3.35 3.455
Hysteresis 50 100 150 mV
VICHRG Linear full charge current, programmable(1) VBAT > VBAT_FULLCHRG, 100-mA steps, R2 = 20 mΩ 100 1500 mA
BAT > VBAT_FULLCHRG, 133-mA steps, R2 = 15 mΩ 133 2000
Accuracy, without autocalibration ICHARGE ≤ 400 mA –75 % –37 % 0 %
ICHARGE ≥ 500 mA –50 % 0 %
Accuracy, with autocalibration ICHARGE ≤ 400 mA –5 % 5 %
ICHARGE ≥ 500 mA –3 % 3 %
VOREG Linear full charge output voltage Programmable, 20-mV steps 3.5 4.76 V
Accuracy, with autocalibration T = 25°C –0.5 % 0.5 %
0°C < T < 125°C –1.0 % 1.0 %
VITERM Charger termination current(1) Programmable, 50-mA steps
R2 = 20 mΩ
50 400 mA
Programmable, 67-mA steps
R2 = 15 mΩ
67 533
Accuracy –33 % 33 % %
ΔLIN Charger dropout voltage, voltage between VSYS and VBAT Programmable, 50-mV steps 100 200 mV
Accuracy –20 20
DPPM regulation, voltage between VSYS and VBAT VBAT > VBATMIN_HI 0.5 × ΔLIN V
DPPM regulation, VSYS voltage VBAT < VBATMIN_HI 3.4 V
VSYS_OVV System overvoltage detection Positive threshold 5.7 5.9 6.1 V
Hysteresis 50 100 200 mV
Recharge threshold voltage (in Power Path mode enabled always, in non-Power Path mode enabled when CHARGE_ONCE bit is 0) Below VOREG 70 120 170 mV
Deglitch time, VBAT decreasing below threshold, tF = 100 ns, 10-mV overdrive 128 ms
Supplement Mode
PGATE driver time Fall time, Cgate = 8 nF, VSYS to VSYS – 2 V, VSYS = 3.2 V 1.0 µs
Rise time, Cgate = 8 nF, 0 V to VSYS – 0.1 V, VSYS = 3.2 V 2.5
Supplement mode threshold level (when entering supplement mode) VSYS below VBAT, programmable 20 30 50 mV
Accuracy –10 10
Supplement mode threshold level (when exiting supplement mode) IBAT 50 100 150 mA
Check the need for supplement mode 100 ms
Charging restart delay 500 µs
Battery Temperature Measurement
Reference voltage GPADC_VREF 1.25 V
Low and high threshold voltages OTP bits, RATIO_LO[2:0], RATIO_HI[2:0] 0.2 × GPADC_VREF 0.9 × GPADC_VREF
Threshold error 1 % %
Comparator offset 10 mV
Battery Presence Detector
RBRI External pulldown resistor 130
IBRI See Table 4-15, GPADC_IN0 current source.
VBRIRef Detection threshold Threshold 1.5 1.6 V
Current consumption of the comparator 10 µA
Delay of the comparator With > 10-mV overdrive 10 µs
(1) Battery current level depends on the resistor R2 value as the loop is sensing the voltage across the resistor.

4.5.10 Indicator LED Driver

Table 4-12 lists the indicator LED driver electrical characteristics.

Table 4-12 Indicator LED Driver Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Indicator LED Driver
VSYS 4.8 V
LED current CURR_LED[1:0] = 00 0 mA
CURR_LED[1:0] = 01 0.85 1 1.15
CURR_LED[1:0] = 10 2.125 2.5 2.875
CURR_LED[1:0] = 11 4.25 5 5.75
Rise and fall time for the current Transition on PWM signal, 10 to 90% 5 µs
Startup time CURR_LED[1:0] from 00 to any other value 20 µs
Quiescent current Disabled µA
VRTC 2
VAC (at 20 V) 70
CHRG_PMID (at 5.25 V) 20
CHRG_PMID (at 20 V) 70
CURR_LED[1:0] = 01 (1 mA) 200 µA
CURR_LED[1:0] = 10 (2.5 mA) 400
CURR_LED[1:0] = 11 (5 mA) 750
Pulldown resistance CURR_LED[1:0] = 00, can be disabled by DIS_PULLDOWN bit 50 100 200
Voltage at the output for performance 3.2 V
Voltage at the output for tolerance CHRG_LED_TEST pin is driven externally 5.5 V
Dropout voltage
Minimum voltage between CHRG_LED_IN and CHRG_LED_TEST
1 mA 0.2 V
2.5 mA 0.4
5 mA 0.6
VAC voltage During operation 4.1 V
VBUS voltage During operation 4.0 V
CHRG_LED_IN voltage 2.3 5.5 V

4.5.11 USB OTG

Table 4-13 lists the USB OTG electrical characteristics.

Table 4-13 USB OTG Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Pullup and Pulldown Resistors
RID_PU_100K ID 100k pullup to LDOUSB 70 100 130
RID_PU_220K ID 220k pullup to LDOUSB 160 220 280
RID_GND_DRV ID 10k pulldown to ground 1 10 20
RID_ LKG ID internal leakage without GPADC (7 V) 350 nA
ID internal leakage without GPADC (2 V) 650 nA
ID external leakage –1.5 0 1 µA
RA_BUS_IN A-device VBUS Input Impedance To GND 10 40 100
RVBUS_DISCHRG B-device VBUS SRP pulldown 5 10 15
RVBUS_CHRG_VBAT B-device VBUS SRP pullup on VBAT 1.5 2.5 5
RVBUS_CHRG_PMID B-device VBUS SRP pullup on CHRG_PMID 1.5 2.5 5
VVBUS_LKG OTG device leakage voltage 0.7 V
IB_UNCFG B-device unconfigured average VBUS input current 2.5 mA
External ID resistances
RID_FLOAT ID pulldown when ID pin is floating 220
RID_A ACA ID pulldown, OTG device as A-device 122 124 126
RID_B ACA ID pulldown, OTG device as B-device, can't connect 67 68 69
RID_C ACA ID pulldown, OTG device as B-device, can connect 36 36.5 37
RID_GND ID pulldown when ID pin is grounded 1
Comparators
VID_WK ID wake-up comparator threshold No hysteresis 0.300 0.650 1.150 V
RID_WK_UP ID wake-up equivalent threshold resistance 10 100 220
VID_CMP1 ID comparator 1 threshold No hysteresis 0.150 0.200 0.250 V
VID_CMP2 ID comparator 2 threshold No hysteresis 0.683 0.720 0.757 V
VID_CMP3 ID comparator 3 threshold No hysteresis 1.300 1.400 1.500 V
VID_CMP4 ID comparator 4 threshold No hysteresis 2.350 2.500 2.650 V
Current Sources
IID_WK_SRC ID wake-up current source VID < 2.75 V 3.5 9 25 µA
IID_SRC_16u ID current source (trimmed) VID < 2.75 V 15.5 16 16.5 µA
IID_SRC_5u ID current source VID < 2.75 V 4.5 5 5.5 µA
ADP Comparators
VADP_ PRB ADP probing voltage threshold No hysteresis 0.6 0.65 0.7 V
VADP_ SNS ADP sensing voltage threshold No hysteresis 0.20 0.40 0.55 V
VADP_ DSCHRG ADP discharge voltage 0.15 V
ADP Current Sources/Sinks
VBUS_IADP_SRC ADP source current VBUS < 0.8 V 1.10 1.40 1.65 mA
VBUS_IADP_SINK ADP sink current 0.5 V < VBUS < 0.8 V 1.1 1.5 2 mA
0.15 V < VBUS < 0.8 V 0.5 1.5 2
ADP Timings
T_ADP_SINK ADP sink time 13 14 15 ms
TA_ADP_PRB ADP probing period, A-device 1.25 1.75 1.85 s
TB_ADP_PRB ADP probing period, B-device 1.9 2.0 2.6 s
T_ADP_SNS ADP sensing time-out 3 s
Comparators
VVBUS_WKUP_UP VBUS wake-up comparator Positive threshold 2.8 3.2 3.6 V
Hysteresis 50 100 175 mV
VA_VBUS_VLD A-device VBUS valid comparator threshold Threshold, no hysteresis 4.4 4.5 4.6 V
VB_SESS_VLD_UP B-device session valid comparator Positive threshold 2.2 2.4 2.6 V
Hysteresis 20 80 140 mV
VA_SESS_VLD_UP A-device session valid comparator Positive threshold 0.9 1.1 1.3 V
Hysteresis 10 40 70 mV
VB_SESS_END_UP B-device session end comparator Positive threshold 0.3 0.5 0.8 V
Hysteresis 10 40 70 mV
VOTG_SESS_VLD_UP OTG session valid comparator Positive threshold 2.90 3.10 3.40 V
Hysteresis 20 80 140 mV
VOTG_OVV_UP OTG overvoltage comparator Positive threshold 6.3 6.5 6.8 V
Hysteresis 40 110 180 mV

4.5.12 Gas Gauge

Table 4-14 lists the gas gauge electrical characteristics.

Table 4-14 Gas Gauge Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Current measurement range 20-mΩ sense resistor –3.1 3.1 A
15-mΩ sense resistor -4.13 4.13

Measurement accuracy of single measurement result after calibration.
Includes reference, temperature, offset, and 3σ statistical variation.
Tolerance of the sense resistor R2 is not included.

CC_ACTIVE_MODE[1:0] = 00
CC_ACTIVE_MODE[1:0] = 01
CC_ACTIVE_MODE[1:0] = 10
CC_ACTIVE_MODE[1:0] = 11
–Vmeas × 1%
–0.11
–0.28
–0.74
–2.15
Vmeas × 1%
0.11
0.28
0.74
2.15
mV
Offset before autocalibration CC_ACTIVE_MODE[1:0] = 00
CC_ACTIVE_MODE[1:0] = 01
CC_ACTIVE_MODE[1:0] = 10
CC_ACTIVE_MODE[1:0] = 11
200
200
200
450
µV
Offset after autocalibration (software must calculate the calibrated result) CC_ACTIVE_MODE[1:0] = 00
CC_ACTIVE_MODE[1:0] = 01
CC_ACTIVE_MODE[1:0] = 10
CC_ACTIVE_MODE[1:0] = 11
10
10
100
450
µV
Usable input voltage range –62 62 mV
Input clock frequency 32-kHz crystal oscillator 32768 Hz
Current consumption Power on; FG_EN = 1 50 70 µA
Power off; FG_EN = 0 0.2
Integration period (sample counter uses 32-kHz crystal oscillator) CC_ACTIVE_MODE[1:0] = 00 250 ms
CC_ACTIVE_MODE[1:0] = 01 62.5
CC_ACTIVE_MODE[1:0] = 10 15.625
CC_ACTIVE_MODE[1:0] = 11 3.90625
R2 External sense resistor 10 20
Integrator data size (2s complement) CC_ACTIVE_MODE[1:0] = 00 1 + 13 Bit
CC_ACTIVE_MODE[1:0] = 01 1 + 11
CC_ACTIVE_MODE[1:0] = 10 1 + 9
CC_ACTIVE_MODE[1:0] = 11 1 + 7
INL Integral nonlinearity (average on 10 measurement results) CC_ACTIVE_MODE[1:0] = 00
CC_ACTIVE_MODE[1:0] = 01
CC_ACTIVE_MODE[1:0] = 10
CC_ACTIVE_MODE[1:0] = 11
–3.5
–2.5
–2.0
–1.5
3.5
2.5
2.0
1.5
LSB
DNL Differential nonlinearity (average on 10 measurement results) CC_ACTIVE_MODE[1:0] = 00
CC_ACTIVE_MODE[1:0] = 01
CC_ACTIVE_MODE[1:0] = 10
CC_ACTIVE_MODE[1:0] = 11
–4.0
–2.5
–1.5
–1.0
4.0
2.5
1.5
1.0
LSB
Accumulator data size 1 + 31 Bit
Offset data size 1 + 9 Bit
Sample counter data size 24 Bit

4.5.13 GPADC

Table 4-15 lists the GPADC electrical characteristics.

Table 4-15 GPADC Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IQ Current consumption GPADC_EN = 1 1600 µA
IQOFF Off mode current GPADC_EN = 0 1 µA
f Running frequency 3 MHz
Resolution 12 Bit
Number of external inputs 7
Number of internal inputs 12
Turn on/off time GPADC_EN 0 to 1 or GPADC_EN 1 to 0 10 20 µs
Gain error without calibration (inputs without scaler) –2 % 2 %
Gain error without calibration (inputs with scaler) GPADC_IN10 –5 % 3 %
Others than GPADC_IN10 –3 3
Offset error without calibration –36 36 LSB
Gain error with calibration (at 25°C temperature)(1) GPADC_IN10 –0.7 % 0.7 %
Others than GPADC_IN10 –0.22 % 0.22 %
Offset error with calibration (at 25°C temperature)(1) GPADC_IN10 -3 3 LSB
Others than GPADC_IN10 -5 5
Gain error drift (Temperature and supply) GPADC_IN0 - GPADC_IN6, GPADC_IN17 –0.6 % 0.25 %
Other channels –0.6 % 0.45 %
Offset drift (Temperature and supply) –2 2 LSB
INL Integral nonlinearity Best fitting, GPADC_IN9 –3 4 LSB
Best fitting, GPADC_IN14 –16 12
Best fitting, other channels –3 3
DNL Differential nonlinearity –2 2 LSB
CIN Input capacitance GPADC_IN17 4 pF
Other inputs 0.5
RExt Source input impedance (external inputs)(2) Source resistance without capacitance 20
Source capacitance with > 20-kΩ source resistance 100 nF
GPADC_VREF voltage reference 1.25 V
GPADC_VREF output current External load 200 µA
VIN Input range (Sigma-Delta ADC; the input voltage and nonsaturated ranges of the scaled inputs are described in Table 5-2) Typical range 0 1.25 V
Assured range without saturation 0.01 1.215
TConv Conversion time 1 channel, sampling = 0 210 µs
1 channel, sampling = 1 640
2 channels, sampling = 0 290
2 channels, sampling = 1 720
GPADC_IN0 current source 6.65 7 7.35 µA
GPADC_IN0 with additional current source GPADC_ISOURCE_EN = 1 20.9 22 23.1
GPADC_IN3 current sources GPADC_REMSENSE[1:0] = 00 0 µA
GPADC_REMSENSE[1:0] = 01 8.5 9.5 10.5
GPADC_REMSENSE[1:0] = 10 340 380 420
GPADC_REMSENSE[1:0] = 11 675 750 825
(1) Total accuracy is a combination of Gain error with calibration (at 25°C temperature), Gain error drift, Offset error with calibration (at 25°C temperature), Offset drift and INL.
(2) If the source impedance is more than 20 kΩ, then 100 nF must be connected to the input.

4.5.14 Thermal Monitoring

Table 4-16 lists the thermal monitoring electrical characteristics.

Table 4-16 Thermal Monitoring Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IQOFF Off ground current (two sensors on the die, specification for one sensor) Off mode 0.1 µA
at 25°C off mode 0.5
IQ On ground current (two sensors on the die, specification for one sensor) On mode, standard mode 7 15 µA
On mode, GPADC measurement 25 40
00 (first hot-die threshold) Rising temperature 104 117 127 °C
Falling temperature 95 108 119
01 (second hot-die threshold) Rising temperature 109 121 132 °C
Falling temperature 99 112 123
10 (third hot-die threshold) Rising temperature 113 125 136 °C
Falling temperature 104 116 128
11 (fourth hot-die threshold) Rising temperature 118 130 141 °C
Falling temperature 108 120 132
Thermal shutdown Rising temperature 136 148 160 °C
Falling temperature 126 138 150

4.5.15 System Control Thresholds

Table 4-17 lists the system control thresholds electrical characteristics.

Table 4-17 System Control Thresholds Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VSYSMIN_HI threshold, rising edge Programmable, step size is 50 mV 2.5 3.55 V
VSYSMIN_HI threshold accuracy –1.6 % +3.2 %
VSYSMIN_LO threshold, falling edge Programmable, step size is 50 mV 2.3 3.1 V
VSYSMIN_LO threshold accuracy –1.6 % +3.2 %
POR rising-edge threshold 2.00 2.15 2.50 V
POR fallng-edge threshold 1.90 2.00 2.10 V
POR hysteresis Rising edge to falling edge 40 150 350 mV

4.5.16 Current Consumption

Table 4-18 lists the current consumption electrical characteristics.

Table 4-18 Current Consumption Electrical Characteristics

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Backup Mode
IVBACKUP(Backup) VBACKUP, supplied on VBACKUP VSYS = 0 V
VBACKUP = 3.2 V
8 10 µA
IVSYS(Backup) VSYS, supplied on VSYS VBACKUP = 0 V
VSYS = 2.7 V
12 19 µA
WAIT-ON State
IVSYS(WAIT-ON) VSYS = 3.8 V, VRTC in a low-power mode 20 30 µA
SLEEP State
IVSYS(SLEEP) SMPS2 and SMPS3 enabled, no load VSYS = 3.8 V 110 µA

4.5.17 Digital Input Signal Electrical Parameters

Table 4-19 lists the digital input signal electrical parameters.

Table 4-19 Digital Input Signal Electrical Parameters

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
PWRON, RPWRON
VIL Low-level input voltage related to VSYS/VDD –0.3 0 0.35 × VSYS V
VIH High-level input voltage related to VSYS/VDD 0.65 × VSYS VSYS VSYS + 0.3 ≤ 5.5 V
GPADC_START, MMC, MSECURE, NRESWARM, PREQ1, PREQ2, PREQ3, SIM, TESTEN
VIL Low-level input voltage related to VIO –0.3 0 0.35 × VIO V
VIH High-level input voltage related to VIO 0.65 × VIO VIO VIO + 0.3 V
BOOT0, BOOT1, BOOT2, CHRG_EXTCHRG_STATZ, OSC32KIN
VIL Low-level input voltage related to VRTC –0.3 0 0.35 × VRTC V
VIH High-level input voltage related to VRTC 0.65 × VRTC VRTC VRTC + 0.3 V
CTLI2C_SCL, CTLI2C_SDA, DVSI2C_SCL, DVSI2C_SDA
VIL Low-level input voltage related to VIO –0.3 0 0.3 × VIO V
VIH High-level input voltage related to VIO 0.7 × VIO VIO VIO + 0.3 V
Hysteresis 0.1 × VIO V
1.2-V Specific Related I/Os: PREQ3(1)(2)
VIL Low-level input voltage related to VIO –0.3 0 0.3 × VIO V
VIH High-level input voltage related to VIO 0.7 × VIO VIO VIO + 0.3 V
(1) PREQ3 can be programmed for two different input supplies (1.2 V/1.8 V) and, as such, has a configurable input threshold.
(2) Applying 1.8-V input logic on the PREQ3 ball when the 1.2-V supply mode is selected does not damage the PREQ3 input buffer. Nevertheless, because the threshold is reduced to its 1.2-V configuration, the input buffer is more sensitive to the low 1.8-V logic level.

4.5.18 Digital Output Signal Electrical Parameters

Table 4-20 lists the digital output signal electrical parameters.

Table 4-20 Digital Output Signal Electrical Parameters

PARAMETER(1) TEST CONDITIONS MIN TYP MAX UNIT
REGEN1, REGEN2, VBUS_DET
VOL Low-level output voltage IOL = 100 µA 0 0.2 × VSYS V
VOH High-level output voltage IOH = 100 µA 0.8 × VSYS VSYS V
BATREMOVAL, CLK32KAO, CLK32KG, INT, NRESPWRON, PWM1, PWM2, SYSEN
VOL Low-level output voltage related to VIO IOL = 2 mA 0 0.45 V
VOL Low-level output voltage related to VIO IOL = 100 µA 0 0.2 V
VOH High-level output voltage related to VIO IOH = 2 mA VIO – 0.45 VIO V
VOH High-level output voltage related to VIO IOH = 100 µA VIO – 0.2 VIO V
CLK32KAUDIO, CHRG_EXTCHRG_ENZ
VOL Low-level output voltage related to VRTC IOL = 2 mA 0 0.45 V
VOL Low-level output voltage related to VRTC IOL = 100 µA 0 0.2 V
VOH High-level output voltage related to VRTC IOH = 2 mA VRTC – 0.45 VRTC V
VOH High-level output voltage related to VRTC IOH = 100 µA VRTC – 0.2 VRTC V
CTLI2C_SDA, DVSI2C_SDA
VOL Low-level output voltage related to VIO 3-mA sink current 0 0.2 × VIO V
(1) All output signals are assured low when VRTC is not available, especially REGEN1, REGEN2, and SYSEN, all three of which control some external power resources.

4.5.19 Digital Output Signal Timing Characteristics

Table 4-21 lists the digital output signal timing characteristics.

Table 4-21 Digital Output Signal Timing Characteristics

BALL NAME/OUTPUT BUFFER LOAD (pF) RISE/FALL TIME (ns)
MIN MAX MIN NOM MAX
CHRG_EXTCHRG_ENZ 5 35 5 15
INT 5 35 5 15
BATREMOVAL 5 35 5 15
NRESPWRON 5 35 5 15
PWM1 5 35 5 15
PWM2 5 35 5 15
REGEN1 5 35 5 25
REGEN2 5 35 5 25
SYSEN 5 35 5 15
VRTC supply output buffer and
VIO supply output buffer
5 1 6
20 4 11
35 5 15
50 8 20
VSYS supply output buffer 5 1 9
20 3 17
35 5 25
50 6 34
CLK32KAO output buffer and
CLK32KG output buffer
5 5 15
20 8 30
35 10 45
50 15 100

4.6 Typical Characteristics

Figure 4-1 shows the 5.0-A SMPS regulator efficiency. Figure 4-2 shows 1.1-A SMPS regulator efficiency.

SMPS_eff_1_TPS80032.gif
5.0 A VBAT = 3.8 V
VOUT = 1.2 V
Figure 4-1 5.0-A SMPS Regulator Efficiencies
SMPS_eff3_TWL6032.gif
1.1 A VBAT = 3.8 V
VOUT = 1.8 V and 1.2 V
Figure 4-2 1.1-A SMPS Regulator Efficiencies

Figure 4-3 and Figure 4-4 show 2.5-A SMPS regulator efficiencies with two different inductor options.

SMPS_2A_eff__TWL6032_TPS80032.gif
2.5 A VBAT = 3.8 V
VOUT = 1.8 V and 1.3 V
Figure 4-3 2.5-A SMPS Regulator Efficiencies (Option 1)
SMPS_2A_2_eff_TWL6032_TPS80032.gif
2.5 A VBAT = 3.8 V
VOUT = 1.8 V and 1.3 V
Figure 4-4 2.5-A SMPS Regulator Efficiencies (Option 2)