SLVSER4B May   2020  – January 2022 TPS92200

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7.     Switching Characteristics
    8. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Peak-Current-Mode PWM Control
      2. 7.3.2 Setting LED Current
      3. 7.3.3 Internal Soft Start
      4. 7.3.4 Input Undervoltage Lockout
      5. 7.3.5 Bootstrap Regulator
      6. 7.3.6 Maximum Duty Cycle
      7. 7.3.7 Overcurrent Protection
        1. 7.3.7.1 High-Side MOSFET Overcurrent Protection
        2. 7.3.7.2 Low-Side MOSFET Sourcing Overcurrent Protection
        3. 7.3.7.3 Low-Side MOSFET Sinking Overcurrent Protection
      8. 7.3.8 Fault Protection
        1. 7.3.8.1 LED Open-Load Protection
        2. 7.3.8.2 LED+ and LED– Short Circuit Protection
        3. 7.3.8.3 LED+ Short Circuit to GND Protection
        4. 7.3.8.4 Sense-Resistor Open-Load Protection
        5. 7.3.8.5 Sense Resistor Short Circuit-to-GND Protection
        6. 7.3.8.6 Overvoltage Protection
        7. 7.3.8.7 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable and Disable the Device
      2. 7.4.2 TPS92200D1 PWM Dimming
      3. 7.4.3 TPS92200D1 Analog Dimming
      4. 7.4.4 TPS92200D2 Analog Dimming
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 TPS92200D1 12-V Input, 1.5-A, 2-Piece IR LED Driver With Analog Dimming
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Inductor Selection
          2. 8.2.1.2.2 Input Capacitor Selection
          3. 8.2.1.2.3 Output Capacitor Selection
            1. 8.2.1.2.3.1 Sense Resistor Selection
              1. 8.2.1.2.3.1.1 Other External Components Selection
        3. 8.2.1.3 Application Curves
      2. 8.2.2 TPS92200D1 24-V Input, 1-A, 6-Piece WLED Driver With PWM Dimming
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Inductor Selection
          2. 8.2.2.2.2 Input Capacitor Selection
          3. 8.2.2.2.3 Output Capacitor Selection
            1. 8.2.2.2.3.1 Sense Resistor Selection
              1. 8.2.2.2.3.1.1 Other External Components Selection
        3. 8.2.2.3 Application Curves
      3. 8.2.3 5-V Input, 1-A, 1-Piece IR LED Driver With TPS92200D2
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
          1. 8.2.3.2.1 Inductor Selection
          2. 8.2.3.2.2 Input Capacitor Selection
          3. 8.2.3.2.3 Output Capacitor Selection
            1. 8.2.3.2.3.1 Sense Resistor Selection
              1. 8.2.3.2.3.1.1 Other External Components Selection
        3. 8.2.3.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Inductor Selection

For this application, input voltage is 24-V rail with 10% variation, output is 6 white LEDs in series and the inductor current ripple requirement is less than 60% of maximum LED current. To choose a proper peak-to-peak inductor current ripple, the low-side FET sink current limit must not be violated when the converter works in no-load condition. This action requires the half of peak-to-peak inductor current ripple to be lower than that limit. Another consideration is the increased core loss and copper loss in the inductor with this larger peak-to-peak current ripple which is also acceptable. After this peak-to-peak inductor current ripple is chosen, use Equation 10 to calculate the recommended value of the output inductor L.

Equation 10. GUID-C7FEF26C-856F-46BD-9B7F-BC6827C28430-low.gif

where

  • KIND is a coefficient that represents the amount of inductor ripple current relative to the maximum LED current.
  • ILED is the maximum LED current.
  • VOUT is the sum of the voltage across LED load and the voltage across sense resistor.

With the chosen inductor value, the user can calculate the actual inductor-current ripple using Equation 11.

Equation 11. GUID-53F3E638-1DB7-4457-9679-4E4495C669F6-low.gif

In this design, VIN(max) = 26.4 V, VOUT = 18.1 V, ILED = 1 A, choose KIND = 0.6, the calculated inductance is 9.49 µH. A 10-µH inductor is chosen. With this inductor, the ripple, peak, and rms currents of the inductor are 0.57 A, 1.29 A, and 1.01 A, respectively.