SLVSFU7B July   2022  – April 2024 TPS929240-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Device Bias and Power
        1. 6.3.1.1 Power Bias (VBAT)
        2. 6.3.1.2 5V Low-Drop-Out Linear Regulator (VLDO)
        3. 6.3.1.3 Undervoltage Lockout (UVLO) and Power-On-Reset (POR)
        4. 6.3.1.4 Power Supply (SUPPLY)
        5. 6.3.1.5 Programmable Low Supply Warning
      2. 6.3.2 Constant Current Output
        1. 6.3.2.1 Reference Current with External Resistor (REF)
        2. 6.3.2.2 64-Step Programmable High-Side Constant-Current Output
      3. 6.3.3 PWM Dimming
        1. 6.3.3.1 PWM Generator
        2. 6.3.3.2 PWM Dimming Frequency
        3. 6.3.3.3 Blank Time
        4. 6.3.3.4 Phase Shift PWM Dimming
        5. 6.3.3.5 Linear Brightness Control
        6. 6.3.3.6 Exponential Brightness Control
      4. 6.3.4 FAIL-SAFE State Operation
      5. 6.3.5 On-Chip, 8-Bit, Analog-to-Digital Converter (ADC)
        1. 6.3.5.1 Minimum On Time for ADC Measurement
        2. 6.3.5.2 ADC Auto Scan
        3. 6.3.5.3 ADC Error
      6. 6.3.6 Diagnostic and Protection in NORMAL State
        1. 6.3.6.1  VBAT Undervoltage Lockout Diagnostics in NORMAL state
        2. 6.3.6.2  Low-Supply Warning Diagnostics in NORMAL State
        3. 6.3.6.3  Supply Undervoltage Diagnostics in NORMAL State
        4. 6.3.6.4  Reference Diagnostics in NORMAL state
        5. 6.3.6.5  Pre-Thermal Warning in NORMAL state
        6. 6.3.6.6  Overtemperature Protection in NORMAL state
        7. 6.3.6.7  Overtemperature Shutdown in NORMAL state
        8. 6.3.6.8  LED Open-Circuit Diagnostics in NORMAL state
        9. 6.3.6.9  LED Short-Circuit Diagnostics in NORMAL state
        10. 6.3.6.10 Single-LED Short-Circuit Detection in NORMAL state
        11. 6.3.6.11 EEPROM CRC Error in NORMAL state
        12. 6.3.6.12 Communication Loss Diagnostic in NORMAL State
        13. 6.3.6.13 Fault Masking in NORMAL state
        14.       53
      7. 6.3.7 Diagnostic and Protection in FAIL-SAFE states
        1. 6.3.7.1  Supply Undervoltage Lockout Diagnostics in FAIL-SAFE states
        2. 6.3.7.2  Low-Supply Warning Diagnostics in FAIL-SAFE states
        3. 6.3.7.3  Supply Undervoltage Diagnostics in FAIL-SAFE State
        4. 6.3.7.4  Reference Diagnostics in FAIL-SAFE states
        5. 6.3.7.5  Pre-Thermal Warning in FAIL-SAFE state
        6. 6.3.7.6  Overtemperature Protection in FAIL-SAFE state
        7. 6.3.7.7  Overtemperature Shutdown in FAIL-SAFE state
        8. 6.3.7.8  LED Open-Circuit Diagnostics in FAIL-SAFE state
        9. 6.3.7.9  LED Short-Circuit Diagnostics in FAIL-SAFE state
        10. 6.3.7.10 Single-LED Short-Circuit Detection in FAIL-SAFE state
        11. 6.3.7.11 EEPROM CRC Error in FAIL-SAFE State
        12. 6.3.7.12 Fault Masking in FAIL-SAFE state
        13.       Diagnostics Table in FAIL-SAFE State
      8. 6.3.8 OFAF Setup In FAIL-SAFE state
      9. 6.3.9 ERR Output
    4. 6.4 Device Functional Modes
      1. 6.4.1 POR State
      2. 6.4.2 INITIALIZATION state
      3. 6.4.3 NORMAL state
      4. 6.4.4 FAIL-SAFE state
      5. 6.4.5 PROGRAM state
    5. 6.5 Programming
      1. 6.5.1 FlexWire Protocol
        1. 6.5.1.1 Protocol Overview
        2. 6.5.1.2 UART Interface Address Setting
        3. 6.5.1.3 Status Response
        4. 6.5.1.4 Synchronization Byte
        5. 6.5.1.5 Device Address Byte
        6. 6.5.1.6 Register Address Byte
        7. 6.5.1.7 Data Frame
        8. 6.5.1.8 CRC Frame
        9. 6.5.1.9 Burst Mode
      2. 6.5.2 Registers Lock
      3. 6.5.3 Register Default Data
      4. 6.5.4 EEPROM Programming
        1. 6.5.4.1 Chip Selection by Pulling REF Pin High
        2. 6.5.4.2 Chip Selection by ADDR Pins Configuration
        3. 6.5.4.3 EEPROM Register Access and Burn
        4. 6.5.4.4 EEPROM PROGRAM State Exit
    6. 6.6 Register Maps
      1. 6.6.1 BRT Registers
      2. 6.6.2 IOUT Registers
      3. 6.6.3 CONF Registers
      4. 6.6.4 CTRL Registers
      5. 6.6.5 FLAG Registers
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Smart Rear Lamp with Distributed LED Drivers
      2. 7.2.2 Design Requirements
      3. 7.2.3 Detailed Design Procedure
      4. 7.2.4 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DCP|38
Thermal pad, mechanical data (Package|Pins)
Orderable Information

On-Chip, 8-Bit, Analog-to-Digital Converter (ADC)

The TPS929240-Q1 has integrated a successive-approximation-register (SAR) ADC for diagnostics.

To manually read the voltage of an ADC channel as listed in the below table, the user must write the 5-bit register ADCCHSEL to select channel. After ADCCHSEL register is written, the one-time ADC conversion starts and clears FLAG_ADCDONE register. As long as the ADC conversion is completed, the ADC result is available in an 8-bit register ADC_OUT and sets FLAG_ADCDONE to 1. Reading the ADC_OUT register also clears FLAG_ADCDONE and starts a new ADC conversion. The FLAG_ADCDONE is set to 0 after reading completion. TI recommends to write the ADCCHSEL register after turning on or changing current output duty cycle at assigned OUTXn with delay of one PWM cycle time which is set by the PWMFREQ register.

The analog value can be calculated based on the read back binary code with the below equation and table.

Equation 6. GUID-844D7E1A-8406-4558-9F98-42104C2D6FC4-low.gif

where

  • ADC_OUT is a decimal number from 0 to 255.
Table 6-4 ADC Channel
CHANNEL NO. ADCCHSEL NAME ADC CALCULATION PARAMETER (a) ADC CALCULATION PARAMETER (k) COMMENT
0 00h REF 0.007V 0.0101V/LSB Reference voltage
1 01h SUPPLY 0.1346V 0.1608V/LSB SUPPLY voltage
2 02h VLDO 0.0465V 0.022V/LSB 5V LDO output voltage
3 03h TEMPSNS –270.312°C 2.688°C/LSB Internal temperature sensor
4 04h IREF 0.9969µA 0.996µA/LSB Reference current
5 05h VBAT 0.1346V 0.1608V/LSB VBAT voltage
6 06h MAXOUT 0.1346V 0.1608V/LSB Maximum channel output voltage
7 07h RESERVED RESERVED RESERVED RESERVED
8 08h OUTA0 0.1346V 0.1608V/LSB Output voltage channel A0
9 09h OUTA1 Output voltage channel A1
10 0Ah OUTA2 Output voltage channel A2
11 0Bh OUTB0 Output voltage channel B0
12 0Ch OUTB1 Output voltage channel B1
13 0Dh OUTB2 Output voltage channel B2
14 0Eh OUTC0 Output voltage channel C0
15 0Fh OUTC1 Output voltage channel C1
16 10h OUTC2 Output voltage channel C2
17 11h OUTD0 Output voltage channel D0
18 12h OUTD1 Output voltage channel D1
19 13h OUTD2 Output voltage channel D2
20 14h OUTE0 Output voltage channel E0
21 15h OUTE1 Output voltage channel E1
22 16h OUTE2 Output voltage channel E2
23 17h OUTF0 Output voltage channel F0
24 18h OUTF1 Output voltage channel F1
25 19h OUTF2 Output voltage channel F2
26 1Ah OUTG0 Output voltage channel G0
27 1Bh OUTG1 Output voltage channel G1
28 1Ch OUTG2 Output voltage channel G2
29 1Dh OUTH0 Output voltage channel H0
30 1Eh OUTH1 Output voltage channel H1
31 1Fh OUTH2 Output voltage channel H2