SNVSCB7A november   2022  – april 2023 TPSF12C1-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 System Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Active EMI Filtering
        1. 8.3.1.1 Schematics
      2. 8.3.2 Capacitive Amplification
      3. 8.3.3 Integrated Line Rejection Filter
      4. 8.3.4 Compensation
      5. 8.3.5 Remote Enable
      6. 8.3.6 Supply Voltage UVLO Protection
      7. 8.3.7 Thermal Shutdown Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Active Mode
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 – AEF Circuit for High-Density On-Board Charger (OBC) in Electric Vehicles (EVs)
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Sense Capacitors
          2. 9.2.1.2.2 Inject Capacitor
          3. 9.2.1.2.3 Compensation Network
          4. 9.2.1.2.4 Injection Network
          5. 9.2.1.2.5 Surge Protection
        3. 9.2.1.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Support Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Active EMI Filtering

A compact and efficient design of the input EMI filter is one of the main challenges in high-density switching regulator design and is critical to achieving the full benefits of electrification in highly constrained system environments such as automotive. For AC-input applications in general, CM chokes and Y-capacitors provide CM filtering, whereas the leakage inductance of the CM chokes and the X-capacitors provide DM filtering. However, CM filters for such applications may have limited Y-capacitance due to touch-current safety requirements and thus require large-sized CM chokes to achieve the requisite attenuation – ultimately resulting in filter designs with bulky, heavy and expensive passive components. Fortunately, the deployment of active filter circuits enable more compact filter solutions for next-generation power conversion systems.