SLVSEX5A October   2020  – December 2020 TPSM41615

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics (PVIN = 12 V)
    7. 6.7 Typical Characteristics (PVIN = 5 V)
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Setting the Output Voltage
      2. 7.3.2  RS+/RS- Remote Sense Function
      3. 7.3.3  Ramp Select (RAMP and RAMP_SEL)
      4. 7.3.4  Switching Frequency (RT)
      5. 7.3.5  Synchronization (SYNC)
        1. 7.3.5.1 Loss of Synchronization
      6. 7.3.6  Stand-alone/Stackable Operation
        1. 7.3.6.1 Stackable Synchronization
          1. 7.3.6.1.1 Sync Configuration
          2. 7.3.6.1.2 Clock Sync Point Selection
          3. 7.3.6.1.3 Configuration 1: Dual Phase, Primary Sync-Out Clock to Secondary
          4. 7.3.6.1.4 Configuration 2: Dual Phase, Primary and Secondary Sync to External System Clock
      7. 7.3.7  Improved Transient Performance versus Fixed Frequency (Stand-alone Operation Only)
      8. 7.3.8  Output On/Off Enable (EN)
      9. 7.3.9  Power Good (PGOOD)
      10. 7.3.10 Soft-Start Operation
      11. 7.3.11 Input Capacitor Selection
      12. 7.3.12 Output Capacitor Selection
      13. 7.3.13 Current Limit (ILIM)
      14. 7.3.14 Safe Start-up into Pre-Biased Outputs
      15. 7.3.15 Overcurrent Protection
      16. 7.3.16 Output Overvoltage and Undervoltage Protection
      17. 7.3.17 Overtemperature Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Active Mode
      2. 7.4.2 Shutdown Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Output Voltage Setpoint
        3. 8.2.2.3 Setting the Switching Frequency
        4. 8.2.2.4 RAMP Setting
        5. 8.2.2.5 Input Capacitors
        6. 8.2.2.6 Output Capacitors
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Examples
      1. 10.2.1 Package Specifications
      2. 10.2.2 EMI
        1. 10.2.2.1 EMI Plots
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 Custom Design With WEBENCH® Tools
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Information

THERMAL METRIC (1) TPSM41625 UNIT
MOV (QFN)
69 PINS
RθJA Junction-to-ambient thermal resistance (2) 13.8 °C/W
ψJT Junction-to-top characterization parameter (3) 4.4 °C/W
ψJB Junction-to-board characterization parameter (4) 9.8 °C/W
TSHDN Thermal Shutdown Temperature 165 °C
Thermal Shutdown Hysteresis 30 °C
For more information about thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
The junction-to-ambient thermal resistance, RθJA, applies to devices soldered directly to a 90 mm × 90 mm, 6-layer PCB with 2 oz. copper and natural convection cooling. Additional airflow reduces RθJA.
The junction-to-top characterization parameter, ψJT, estimates the junction temperature, TJ, of a device in a real system, using a procedure described in JESD51-2A (section 6 and 7). TJ = ψJT × Pdis + TT; where Pdis is the power dissipated in the device and TT is the temperature of the top of the device.
The junction-to-board characterization parameter, ψJB, estimates the junction temperature, TJ, of a device in a real system, using a procedure described in JESD51-2A (sections 6 and 7). TJ = ψJB × Pdis + TB; where Pdis is the power dissipated in the device and TB is the temperature of the board 1mm from the device.