SLVSGB4B October   2021  – April 2022 TPSM63606

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 System Characteristics
    7. 7.7 Typical Characteristics
    8. 7.8 Typical Characteristics (VIN = 12 V)
    9. 7.9 Typical Characteristics (VIN = 24 V)
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage Range (VIN1, VIN2)
      2. 8.3.2  Adjustable Output Voltage (FB)
      3. 8.3.3  Input Capacitors
      4. 8.3.4  Output Capacitors
      5. 8.3.5  Switching Frequency (RT)
      6. 8.3.6  Precision Enable and Input Voltage UVLO (EN/SYNC)
      7. 8.3.7  Frequency Synchronization (EN/SYNC)
      8. 8.3.8  Spread Spectrum
      9. 8.3.9  Power Good Monitor (PG)
      10. 8.3.10 Adjustable Switch-Node Slew Rate (RBOOT, CBOOT)
      11. 8.3.11 Bias Supply Regulator (VCC, VLDOIN)
      12. 8.3.12 Overcurrent Protection (OCP)
      13. 8.3.13 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 – High-Efficiency 6-A Synchronous Buck Regulator for Industrial Applications
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 9.2.1.2.2 Output Voltage Setpoint
          3. 9.2.1.2.3 Switching Frequency Selection
          4. 9.2.1.2.4 Input Capacitor Selection
          5. 9.2.1.2.5 Output Capacitor Selection
          6. 9.2.1.2.6 Other Connections
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Design 2 – Inverting Buck-Boost Regulator with Negative Output Voltage
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Output Voltage Setpoint
          2. 9.2.2.2.2 IBB Maximum Output Current
          3. 9.2.2.2.3 Switching Frequency Selection
          4. 9.2.2.2.4 Input Capacitor Selection
          5. 9.2.2.2.5 Output Capacitor Selection
          6. 9.2.2.2.6 Other Considerations
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Thermal Design and Layout
    2. 11.2 Layout Example
      1. 11.2.1 Package Specifications
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
      2. 12.1.2 Development Support
        1. 12.1.2.1 Custom Design With WEBENCH® Tools
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overcurrent Protection (OCP)

The TPSM63606 is protected from overcurrent conditions using cycle-by-cycle current limiting of the peak inductor current. The current is compared every switching cycle to the current limit threshold. During an overcurrent condition, the output voltage decreases.

The TPSM63606 employs hiccup overcurrent protection if there is an extreme overload. In hiccup mode, the TPSM63606 module is shut down and kept off for 80 ms (typical) before a restart is attempted. If an overcurrent or short-circuit fault condition still exists, hiccup repeats until the fault condition is removed. Hiccup mode reduces power dissipation under severe overcurrent conditions, thus preventing overheating and potential damage to the device. Once the fault is removed, the module automatically recovers and returns to normal operation.