SLVSGJ8 April   2022 TPSM63606E

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 System Characteristics
    7. 7.7 Typical Characteristics
    8. 7.8 Typical Characteristics (VIN = 12 V)
    9. 7.9 Typical Characteristics (VIN = 24 V)
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage Range (VIN1, VIN2)
      2. 8.3.2  Adjustable Output Voltage (FB)
      3. 8.3.3  Input Capacitors
      4. 8.3.4  Output Capacitors
      5. 8.3.5  Switching Frequency (RT)
      6. 8.3.6  Precision Enable and Input Voltage UVLO (EN/SYNC)
      7. 8.3.7  Frequency Synchronization (EN/SYNC)
      8. 8.3.8  Spread Spectrum
      9. 8.3.9  Power Good Monitor (PG)
      10. 8.3.10 Adjustable Switch-Node Slew Rate (RBOOT, CBOOT)
      11. 8.3.11 Bias Supply Regulator (VCC, VLDOIN)
      12. 8.3.12 Overcurrent Protection (OCP)
      13. 8.3.13 Thermal Shutdown
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Standby Mode
      3. 8.4.3 Active Mode
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design 1 – High-Efficiency 6-A Synchronous Buck Regulator for Industrial Applications
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 9.2.1.2.2 Output Voltage Setpoint
          3. 9.2.1.2.3 Switching Frequency Selection
          4. 9.2.1.2.4 Input Capacitor Selection
          5. 9.2.1.2.5 Output Capacitor Selection
          6. 9.2.1.2.6 Other Connections
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Design 2 – Inverting Buck-Boost Regulator with Negative Output Voltage
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Output Voltage Setpoint
          2. 9.2.2.2.2 Switching Frequency Selection
          3. 9.2.2.2.3 Input Capacitor Selection
          4. 9.2.2.2.4 Output Capacitor Selection
          5. 9.2.2.2.5 Other Considerations
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Thermal Design and Layout
    2. 11.2 Layout Example
      1. 11.2.1 Package Specifications
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
      2. 12.1.2 Development Support
        1. 12.1.2.1 Custom Design With WEBENCH® Tools
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Switching Frequency (RT)

Connect a resistor, designated as RRT in Figure 8-1, between RT and AGND to set the swiching frequency within the range of 200 kHz to 2.2 MHz. Use Equation 5 or refer to Figure 7-8 to calculate RRT for a desired frequency.

Equation 5.

Refer to Table 8-1 or use the simplified expression in Equation 6 to find a switching frequency that sets an inductor ripple current of 25% to 40% of the 6-A module current rating at nominal input voltage:

Equation 6.

where

  • VIN(nom) and VOUT are the nominal input voltage (typically 12 V or 24 V) and output voltage of the application, respectively.

Note that a resistor value outside of the recommended range can cause the module to shut down. This prevents unintended operation if the RT pin is shorted to ground or left open. Do not apply a pulsed signal to this pin to force synchronization. Refer to Section 8.3.7 if clock synchronization is required.