SLVSGU1A November   2022  – December 2023 TPSM63610

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN1, VIN2)
      2. 7.3.2  Adjustable Output Voltage (FB)
      3. 7.3.3  Input Capacitors
      4. 7.3.4  Output Capacitors
      5. 7.3.5  Switching Frequency (RT)
      6. 7.3.6  Precision Enable and Input Voltage UVLO (EN)
      7. 7.3.7  Frequency Synchronization (SYNC/MODE)
      8. 7.3.8  Spread Spectrum
      9. 7.3.9  Power-Good Monitor (PG)
      10. 7.3.10 Adjustable Switch-Node Slew Rate (RBOOT, CBOOT)
      11. 7.3.11 Bias Supply Regulator (VCC, VLDOIN)
      12. 7.3.12 Overcurrent Protection (OCP)
      13. 7.3.13 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
  9. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – High-Efficiency 8-A (10-A peak) Synchronous Buck Regulator for Industrial Applications
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Output Voltage Setpoint
          3. 8.2.1.2.3 Switching Frequency Selection
          4. 8.2.1.2.4 Input Capacitor Selection
          5. 8.2.1.2.5 Output Capacitor Selection
          6. 8.2.1.2.6 Other Connections
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 – Inverting Buck-Boost Regulator with Negative Output Voltage
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Output Voltage Setpoint
          2. 8.2.2.2.2 IBB Maximum Output Current
          3. 8.2.2.2.3 Switching Frequency Selection
          4. 8.2.2.2.4 Input Capacitor Selection
          5. 8.2.2.2.5 Output Capacitor Selection
          6. 8.2.2.2.6 Other Considerations
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Thermal Design and Layout
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Precision Enable and Input Voltage UVLO (EN)

The EN pin provides precision ON and OFF control for the TPSM63610. After the EN pin voltage exceeds the rising threshold and VIN is above its minimum turn-on threshold, the device starts operation. The simplest way to enable the TPSM63610 is to connect EN directly to VIN. This action allows the TPSM63610 to start up when VIN is within its valid operating range. However, many applications benefit from the use of an enable divider network as shown in Figure 7-5, which establishes a precision input undervoltage lockout (UVLO). This can be used for sequencing, to prevent re-triggering the device when used with long input cables, or to reduce the occurrence of deep discharge of a battery power source. An external logic signal can also be used to drive the enable input to toggle the output on and off and for system sequencing or protection.

Calculate RENB using Equation 6:

Equation 6. RENBkΩ=RENTkΩ×VEN_RISE VVIN(on)V-VEN_RISE V

where

  • A typical value for RENT is 100 kΩ.
  • VEN_RISE is enable rising threshold voltage of 1.263 V (typical).
  • VIN(on) is the desired start-up input voltage.