SLVSGU1A November   2022  – December 2023 TPSM63610

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN1, VIN2)
      2. 7.3.2  Adjustable Output Voltage (FB)
      3. 7.3.3  Input Capacitors
      4. 7.3.4  Output Capacitors
      5. 7.3.5  Switching Frequency (RT)
      6. 7.3.6  Precision Enable and Input Voltage UVLO (EN)
      7. 7.3.7  Frequency Synchronization (SYNC/MODE)
      8. 7.3.8  Spread Spectrum
      9. 7.3.9  Power-Good Monitor (PG)
      10. 7.3.10 Adjustable Switch-Node Slew Rate (RBOOT, CBOOT)
      11. 7.3.11 Bias Supply Regulator (VCC, VLDOIN)
      12. 7.3.12 Overcurrent Protection (OCP)
      13. 7.3.13 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
  9. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – High-Efficiency 8-A (10-A peak) Synchronous Buck Regulator for Industrial Applications
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Output Voltage Setpoint
          3. 8.2.1.2.3 Switching Frequency Selection
          4. 8.2.1.2.4 Input Capacitor Selection
          5. 8.2.1.2.5 Output Capacitor Selection
          6. 8.2.1.2.6 Other Connections
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 – Inverting Buck-Boost Regulator with Negative Output Voltage
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Output Voltage Setpoint
          2. 8.2.2.2.2 IBB Maximum Output Current
          3. 8.2.2.2.3 Switching Frequency Selection
          4. 8.2.2.2.4 Input Capacitor Selection
          5. 8.2.2.2.5 Output Capacitor Selection
          6. 8.2.2.2.6 Other Considerations
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Thermal Design and Layout
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

Deriving from a family of synchronous buck modules, the TPSM63610 is a highly integrated 36-V, 8-A DC/DC design that combines power MOSFETs, a shielded inductor, and passives in an enhanced HotRod™ QFN package. The module has VIN and VOUT pins located at the corners of the package for optimized input and output capacitor placement. Four larger thermal pads beneath the module enable a simple layout and easy handling in manufacturing.

With an output voltage from 1 V to 20 V, the TPSM63610 is designed to quickly and easily implement a low-EMI design in a small PCB footprint. The total design requires as few as four external components and eliminates the magnetics and compensation part selection from the design process.

Although designed for small size and simplicity in space-constrained applications, the TPSM63610 device offers many features for robust performance: precision enable with hysteresis for adjustable input-voltage UVLO, resistor-programmable switch node slew rate and spread spectrum for improved EMI. Along with integrated VCC, bootstrap and input capacitors for increased reliability and higher density. The device can be configured for constant switching frequency over the full load current range (FPWM), or variable frequency (PFM) for higher light load efficiency. Including a PGOOD indicator for sequencing, fault protection, and output voltage monitoring.

Package Information
PART NUMBERPACKAGE(1)PACKAGE SIZE(2)
TPSM63610RDF (B3QFN, 22)7.50 mm × 6.50 mm
For more information, see Section 11.
The package size (length × width) is a nominal value and includes pins, where applicable.
GUID-20220429-SS0I-WJTM-X4BF-F0KZ9SFGR8SW-low.svgTypical Schematic
GUID-20220815-SS0I-WMK8-R95P-R1QWHPR590DD-low.svgTypical Efficiency, VOUT = 5 V, FSW = 1 MHz