SLUSFE1 august   2023 TPSM843A22E

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  VIN Pins and VIN UVLO
      2. 7.3.2  Internal Bypassing (BP5)
      3. 7.3.3  Enable and Adjustable UVLO
        1. 7.3.3.1 Internal Sequence of Events During Start-up
      4. 7.3.4  Switching Frequency Selection
      5. 7.3.5  Switching Frequency Synchronization to an External Clock
        1. 7.3.5.1 Internal PWM Oscillator Frequency
        2. 7.3.5.2 Loss of Synchronization
        3. 7.3.5.3 Interfacing the SYNC/FSEL Pin
      6. 7.3.6  Remote Sense Amplifier and Adjusting the Output Voltage
      7. 7.3.7  Loop Compensation Guidelines
        1. 7.3.7.1 Output Filter Inductor Tradeoffs
        2. 7.3.7.2 Ramp Capacitor Selection
        3. 7.3.7.3 Output Capacitor Selection
        4. 7.3.7.4 Design Method for Good Transient Response
      8. 7.3.8  Soft Start and Prebiased Output Start-up
      9. 7.3.9  MSEL Pin
      10. 7.3.10 Power Good (PG)
      11. 7.3.11 Output Overload Protection
        1. 7.3.11.1 Positive Inductor Current Protection
        2. 7.3.11.2 Negative Inductor Current Protection
      12. 7.3.12 Output Overvoltage and Undervoltage Protection
      13. 7.3.13 Overtemperature Protection
      14. 7.3.14 Output Voltage Discharge
    4. 7.4 Device Functional Modes
      1. 7.4.1 Forced Continuous-Conduction Mode
      2. 7.4.2 Discontinuous Conduction Mode During Soft Start
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 1.0-V Output, 1-MHz Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Switching Frequency
          2. 8.2.1.2.2  Output Inductor Selection
          3. 8.2.1.2.3  Output Capacitor
          4. 8.2.1.2.4  Input Capacitor
          5. 8.2.1.2.5  Adjustable Undervoltage Lockout
          6. 8.2.1.2.6  Output Voltage Resistors Selection
          7. 8.2.1.2.7  Bootstrap Capacitor Selection
          8. 8.2.1.2.8  BP5 Capacitor Selection
          9. 8.2.1.2.9  PG Pullup Resistor
          10. 8.2.1.2.10 Current Limit Selection
          11. 8.2.1.2.11 Soft-Start Time Selection
          12. 8.2.1.2.12 Ramp Selection and Control Loop Stability
          13. 8.2.1.2.13 MSEL Pin
        3. 8.2.1.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
      3. 8.4.3 Thermal Performance
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Design Method for Good Transient Response

The following method to design converter compensation optimizes the load transient response.

  1. Calculate the require output impedance to meet transient response goals. This equation assumes the load step transient is faster than the BW of the converter.
    Equation 9. ZOUT_REQUIRED=delta_VOUTdelta_IOUT
  2. Select a value for output inductance.
    Equation 10. L=VIN  -  VOUTI×VOUTVIN×1fSW
  3. Calculate the required converter output impedance to meet the transient response goal.
    Equation 11. ZOUT_CONVERTER=0.00135  +  LτCRAMP34×VOUTVREF
    Ensure ZOUT_CONVERTER is less than the ZOUT_REQUIRED found in step 1. Also recheck the voltage on CRAMP is within acceptable limits. (see previous section) If it is too large, use a larger CRAMP value.
  4. Calculate the minimum output capacitance required to meet the impedance requirements.
    Equation 12. COUT_MIN=1 2π × ZOUT_CONVERTER ×  fCO_DESIRED

    where

    • fCO_DESIRED is the desired converter closed loop crossover frequency, which is usually 1/8 to 1/4 of the converter switching frequency.
  5. Calculate the number of output capacitors required. From the previous section, use the guidelines for ESR to select a capacitor type and value, then use the equation here to find the number of capacitors required. Notice that the impedance of the capacitors (ESR plus impedance of the capacitance itself at the chosen crossover frequency) is used.
    Equation 13. ZCAPACITOR=RESR_CAPACITOR+12π  ×  CCAPACITOR  ×  FCO
    Equation 14. NCAPACITORS=ZCAPACITORZOUT_CONVERTER
  6. Using one of the tools on TI.com, simulate with the values for the design.