SLLSEV7E August   2016  – March 2023 TUSB546-DCI

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Supply Characteristics
    6. 6.6  DC Electrical Characteristics
    7. 6.7  AC Electrical Characteristics
    8. 6.8  Timing Requirements
    9. 6.9  Switching Characteristics
    10. 6.10 Typical Characteristics
      1.      Parameter Measurement Information
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 USB 3.1
      2. 7.3.2 DisplayPort
      3. 7.3.3 4-Level Inputs
      4. 7.3.4 Receiver Linear Equalization
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device Configuration in GPIO Mode
      2. 7.4.2 28
      3. 7.4.3 Device Configuration In I2C Mode
      4. 7.4.4 DisplayPort Mode
      5. 7.4.5 Linear EQ Configuration
      6. 7.4.6 USB3.1 Modes
      7. 7.4.7 Operation Timing – Power Up
    5. 7.5 Programming
    6. 7.6 Register Maps
      1. 7.6.1 General Register (address = 0x0A) [reset = 00000001]
      2. 7.6.2 DisplayPort Control/Status Registers (address = 0x10) [reset = 00000000]
      3. 7.6.3 DisplayPort Control/Status Registers (address = 0x11) [reset = 00000000]
      4. 7.6.4 DisplayPort Control/Status Registers (address = 0x12) [reset = 00000000]
      5. 7.6.5 DisplayPort Control/Status Registers (address = 0x13) [reset = 00000000]
      6. 7.6.6 USB3.1 Control/Status Registers (address = 0x20) [reset = 00000000]
      7. 7.6.7 USB3.1 Control/Status Registers (address = 0x21) [reset = 00000000]
      8. 7.6.8 USB3.1 Control/Status Registers (address = 0x22) [reset = 00000100]
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 System Examples
      1. 8.3.1 USB 3.1 Only
      2. 8.3.2 USB 3.1 and 2 Lanes of DisplayPort
      3. 8.3.3 DisplayPort Only
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

USB3.1 Modes

The TUSB546-DCI monitors the physical layer conditions like receiver termination, electrical idle, LFPS, and SuperSpeed signaling rate to determine the state of the USB3.1 interface. Depending on the state of the USB 3.1 interface, the TUSB546-DCI can be in one of four primary modes of operation when USB 3.1 is enabled (CTL0 = H or CTLSEL0 = 1b1): Disconnect, U2/U3, U1, and U0.

The Disconnect mode is the state in which TUSB546-DCI has not detected far-end termination on both upstream facing port (UFP) or downstream facing port (DFP). The disconnect mode is the lowest power mode of each of the four modes. The TUSB546-DCI remains in this mode until far-end receiver termination has been detected on both UFP and DFP. The TUSB546-DCI immediately exits this mode and enter U0 once far-end termination is detected.

Once in U0 mode, the TUSB546-DCI will redrive all traffic received on UFP and DFP. U0 is the highest power mode of all USB3.1 modes. The TUSB546-DCI remains in U0 mode until electrical idle occurs on both UFP and DFP. Upon detecting electrical idle, the TUSB546-DCI immediately transitions to U1.

The U1 mode is the intermediate mode between U0 mode and U2/U3 mode. In U1 mode, the TUSB546-DCI UFP and DFP receiver termination remains enabled. The UFP and DFP transmitter DC common mode is maintained. The power consumption in U1 is similar to power consumption of U0.

Next to the disconnect mode, the U2/U3 mode is next lowest power state. While in this mode, the TUSB546-DCI periodically performs far-end receiver detection. Anytime the far-end receiver termination is not detected on either UFP or DFP, the TUSB546-DCI leaves the U2/U3 mode and transitions to the Disconnect mode. It also monitors for a valid LFPS. Upon detection of a valid LFPS, the TUSB546-DCI immediately transitions to the U0 mode. In U2/U3 mode, the TUSB546-DCI receiver terminations remain enabled but the TX DC common mode voltage is not maintained.