SLLSE76Q March   2011  – March 2024 TUSB7320 , TUSB7340

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  3.3-V I/O Electrical Characteristics
    6. 5.6  Input Clock Specification
    7. 5.7  Input Clock 1.8-V DC Characteristics
    8. 5.8  Crystal Specification
    9. 5.9  TUSB7320 Power Consumption
    10. 5.10 TUSB7340 Power Consumption
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 PHY Control
        1. 6.3.1.1 Output Voltage Swing Control
          1. 6.3.1.1.1 De-Emphasis Control
        2. 6.3.1.2 Adaptive Equalizer
      2. 6.3.2 Input Clock
        1. 6.3.2.1 Clock Source Requirements
        2. 6.3.2.2 External Clock
        3. 6.3.2.3 External Crystal
    4. 6.4 Programming
      1. 6.4.1 Two-Wire Serial-Bus Interface
        1. 6.4.1.1 Serial-Bus Interface Implementation
        2. 6.4.1.2 Serial-Bus Interface Protocol
        3. 6.4.1.3 Serial-Bus EEPROM Application
      2. 6.4.2 System Management Interrupt
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Features
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Upstream Implementation
        2. 7.2.2.2 Downstream Ports Implementation
        3. 7.2.2.3 PCI Express Connector
        4. 7.2.2.4 1.1-V Regulator
        5. 7.2.2.5 5-V VBUS Options
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
      1. 7.3.1 Power-Up and Power-Down Sequencing
        1. 7.3.1.1 Power-Up Sequence
        2. 7.3.1.2 Power-Down Sequence
      2. 7.3.2 PCI Express Power Management
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 High-Speed Differential Routing
        2. 7.4.1.2 SuperSpeed Differential Routing
      2. 7.4.2 Layout Example
  9. Register Maps
    1. 8.1 Classic PCI Configuration Space
      1. 8.1.1  The PCI Configuration Map
      2. 8.1.2  Vendor ID Register
      3. 8.1.3  Device ID Register
      4. 8.1.4  Command Register
      5. 8.1.5  Status Register
      6. 8.1.6  Class Code and Revision ID Register
      7. 8.1.7  Cache Line Size Register
      8. 8.1.8  Latency Timer Register
      9. 8.1.9  Header Type Register
      10. 8.1.10 BIST Register
      11. 8.1.11 Base Address Register 0
      12. 8.1.12 Base Address Register 1
      13. 8.1.13 Base Address Register 2
      14. 8.1.14 Base Address Register 3
      15. 8.1.15 Subsystem Vendor ID Register
      16. 8.1.16 Subsystem ID Register
      17. 8.1.17 Capabilities Pointer Register
      18. 8.1.18 Interrupt Line Register
      19. 8.1.19 Interrupt Pin Register
      20. 8.1.20 Min Grant Register
      21. 8.1.21 Max Latency Register
      22. 8.1.22 Capability ID Register
      23. 8.1.23 Next Item Pointer Register
      24. 8.1.24 Power Management Capabilities Register
      25. 8.1.25 Power Management Control/Status Register
      26. 8.1.26 Power Management Bridge Support Extension Register
      27. 8.1.27 Power Management Data Register
      28. 8.1.28 MSI Capability ID Register
      29. 8.1.29 Next Item Pointer Register
      30. 8.1.30 MSI Message Control Register
      31. 8.1.31 MSI Lower Message Address Register
      32. 8.1.32 MSI Upper Message Address Register
      33. 8.1.33 MSI Message Data Register
      34. 8.1.34 Serial Bus Release Number Register (SBRN)
      35. 8.1.35 Frame Length Adjustment Register (FLADJ)
      36. 8.1.36 PCI Express Capability ID Register
      37. 8.1.37 Next Item Pointer Register
      38. 8.1.38 PCI Express Capabilities Register
      39. 8.1.39 Device Capabilities Register
      40. 8.1.40 Device Control Register
      41. 8.1.41 Device Status Register
      42. 8.1.42 Link Capabilities Register
      43. 8.1.43 Link Control Register
      44. 8.1.44 Link Status Register
      45. 8.1.45 Device Capabilities 2 Register
      46. 8.1.46 Device Control 2 Register
      47. 8.1.47 Link Control 2 Register
      48. 8.1.48 Link Status 2 Register
      49. 8.1.49 Serial Bus Data Register
      50. 8.1.50 Serial Bus Index Register
      51. 8.1.51 Serial Bus Target Address Register
      52. 8.1.52 Serial Bus Control and Status Register
      53. 8.1.53 GPIO Control Register
      54. 8.1.54 GPIO Data Register
      55. 8.1.55 MSI-X Capability ID Register
      56. 8.1.56 Next Item Pointer Register
      57. 8.1.57 MSI-X Message Control Register
      58. 8.1.58 MSI-X Table Offset and BIR Register
      59. 8.1.59 MSI-X PBA Offset and BIR Register
      60. 8.1.60 Subsystem Access Register
      61. 8.1.61 General Control 0 Register
      62. 8.1.62 General Control 1 Register
      63. 8.1.63 General Control 2 Register
      64. 8.1.64 USB Control Register
      65. 8.1.65 De-Emphasis and Swing Control Register
      66. 8.1.66 Equalizer Control Register
      67. 8.1.67 Custom PHY Transmit/Receive Control Register
    2. 8.2 PCI Express Extended Configuration Space
      1. 8.2.1  The PCI Express Extended Configuration Map
      2. 8.2.2  Advanced Error Reporting Capability Register
      3. 8.2.3  Next Capability Offset / Capability Version Register
      4. 8.2.4  Uncorrectable Error Status Register
      5. 8.2.5  Uncorrectable Error Mask Register
      6. 8.2.6  Uncorrectable Error Severity Register
      7. 8.2.7  Correctable Error Severity Register
      8. 8.2.8  Correctable Error Mask Register
      9. 8.2.9  Advanced Error Capabilities and Control Register
      10. 8.2.10 Header Log Register
      11. 8.2.11 Device Serial Number Capability ID Register
      12. 8.2.12 Next Capability Offset/Capability Version Register
      13. 8.2.13 Device Serial Number Register
    3. 8.3 xHCI Memory Mapped Register Space
      1. 8.3.1 The xHCI Register Map
      2. 8.3.2 Host Controller Capability Registers
        1. 8.3.2.1 Capability Registers Length
        2. 8.3.2.2 Host Controller Interface Version Number
        3. 8.3.2.3 Host Controller Structural Parameters 1
        4. 8.3.2.4 Host Controller Structural Parameters 2
        5. 8.3.2.5 Host Controller Structural Parameters 3
        6. 8.3.2.6 Host Controller Capability Parameters
        7. 8.3.2.7 Doorbell Offset
        8. 8.3.2.8 Runtime Register Space Offset
      3. 8.3.3 Host Controller Operational Registers
        1. 8.3.3.1  USB Command Register
        2. 8.3.3.2  USB Command Register
        3. 8.3.3.3  USB Status Register
        4. 8.3.3.4  Page Size Register
        5. 8.3.3.5  Device Notification Control Register
        6. 8.3.3.6  Command Ring Control Register
        7. 8.3.3.7  Device Context Base Address Array Pointer Register
        8. 8.3.3.8  Configure Register
        9. 8.3.3.9  Port Status and Control Register
        10. 8.3.3.10 Port PM Status and Control Register (USB 3.0 Ports)
        11. 8.3.3.11 Port PM Status and Control Register (USB 2.0 Ports)
        12. 8.3.3.12 Port Link Info Register
      4. 8.3.4 Host Controller Runtime Registers
        1. 8.3.4.1 Microframe Index Register
        2. 8.3.4.2 Interrupter Management Register
        3. 8.3.4.3 Interrupter Moderation Register
        4. 8.3.4.4 Event Ring Segment Table Size Register
        5. 8.3.4.5 Event Ring Segment Table Base Address Register
        6. 8.3.4.6 Event Ring Dequeue Pointer Register
      5. 8.3.5 Host Controller Doorbell Registers
      6. 8.3.6 xHCI Extended Capabilities Registers
        1. 8.3.6.1 USB Legacy Support Capability Register
        2. 8.3.6.2 USB Legacy Support Control/Status Register
        3. 8.3.6.3 xHCI Supported Protocol Capability Register (USB 2.0)
        4. 8.3.6.4 xHCI Supported Protocol Name String Register (USB 2.0)
        5. 8.3.6.5 xHCI Supported Protocol Port Register (USB 2.0)
        6. 8.3.6.6 xHCI Supported Protocol Capability Register (USB 3.0)
        7. 8.3.6.7 xHCI Supported Protocol Name String Register (USB 3.0)
        8. 8.3.6.8 xHCI Supported Protocol Port Register (USB 3.0)
    4. 8.4 MSI-X Memory Mapped Register Space
      1. 8.4.1 The MSI-X Table and PBA in Memory Mapped Register Space
    5. 8.5 The MSI-X Table and PBA in Memory Mapped Register Space
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Device Nomenclature
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pin Configuration and Functions

GUID-0A76783C-74B3-4CF2-ACBD-DD1704F7CF92-low.gif Figure 4-1 RKM Package,100-Pin WQFN-MR Exposed Thermal PadTUSB7320 (Top View)
GUID-A44E7809-968F-4492-A499-1FDF2F889A28-low.gif Figure 4-2 RKM Package,100-Pin WQFN-MR Exposed Thermal PadTUSB7340 (Top View)

The following tables give a description of the terminals. These terminals are grouped in tables by functionality. Each table includes the terminal name, terminal number, I/O type, and terminal description.

TYPE DESCRIPTION
I Input
O Output
I/O Input/Output
PD, PU Internal pull-down/pullup
S Strapping pin
P Power supply
G Ground
Table 4-1 Clock and Reset Signals
PIN TYPE DESCRIPTION
NAME TUSB7320 TUSB7340
CLOCK AND RESET SIGNALS
GRST# A15 A15 I PU Global power reset. This reset brings all of the TUSB73x0 internal registers to their default states. When GRST# is asserted, the device is completely nonfunctional. GRST# should be asserted until all power rails are valid at the device. If a 24 MHz or 48 MHz reference clock is used instead of a crystal, GRST# must remain asserted until the 24 MHz or 48 MHz clock is stable.
XI A23 A23 I Crystal input. This terminal is the crystal input for the internal oscillator. The input may alternately be driven by the output of an external oscillator. When using a crystal a 2-MΩ feedback resistor is required between XI and XO.
XO A22 A22 O Crystal output. This terminal is crystal output for the internal oscillator. If XI is driven by an external oscillator this pin may be left unconnected. When using a crystal a 2-MΩ feedback resistor is required between XI and XO.
FREQSEL B14 B14 I Frequency select. This terminal indicates the oscillator input frequency and is used to configure the correct PLL multiplier. This pin should be set low for normal operation.
PCIE_REFCLKP A45 A45 I PCI Express Reference Clock. PCIE_REFCLKP and PCIE_REFCLKN comprise the differential input pair for the 100-MHz system reference clock.
PCIE_REFCLKN B41 B41 I
PERST# A40 A40 I PCI Express Reset Input. The PERST# signal is used to signal when the system power is stable. The PERST# signal is also used to generate an internal power on reset
PCI EXPRESS SIGNALS
PCIE_TXP B38 B38 O PCI Express transmitter differential pair (positive).
PCIE_TXN A41 A41 O PCI Express transmitter differential pair (negative).
PCIE_RXP B39 B39 I PCI Express receiver differential pair (positive).
PCIE_RXN A42 A42 I PCI Express receiver differential pair (negative).
WAKE# B35 B35 O Wake. Wake is an active low signal that is driven low to reactivate the PCI Express link hierarchy’s main power rails and reference clocks. Note: WAKE# is not a failsafe I/O and should not be connected to a 3.3-V auxiliary supply while VDD33 is not present.
CLKREQ# B36 B36 O PCI Express REFCLK Request signal. Note: CLKREQ# is not a failsafe I/O and should not be connected to a 3.3-V auxiliary supply while VDD33 is not present.
USB DOWNSTREAM SIGNALS
USB_SSTXP_DN1 A17 A17 O USB SuperSpeed transmitter differential pair (positive). Note: When routing, it is permissible to swap the positive and negative signals in Port 1 SSTX differential pair.
USB_SSTXN_DN1 B15 B15 O USB SuperSpeed transmitter differential pair (negative). Note: When routing, it is permissible to swap the positive and negative signals in Port 1 SSTX differential pair.
USB_SSRXP_DN1 A18 A18 I USB SuperSpeed receiver differential pair (positive). Note: When routing, it is permissible to swap the positive and negative signals in Port 1 SSRX differential pair.
USB_SSRXN_DN1 B16 B16 I USB SuperSpeed receiver differential pair (negative). Note: When routing, it is permissible to swap the positive and negative signals in Port 1 SSRX differential pair.
USB_DP_DN1 A20 A20 I/O USB High-speed differential transceiver (positive).
USB_DM_DN1 B18 B18 I/O USB High-speed differential transceiver (negative).
PWRON1# B33 B33 O PD USB DS Port 1 Power On Control for Downstream Power. The terminal is used to control the downstream power switch. If the PWRON_POLARITY bit is set to 1, this pin is active high and the internal pull-down is disabled. This pin may be at low impedance when power rails are removed.
OVERCUR1# A36 A36 I PU USB DS Port 1 Overcurrent Detection. 0: overcurrent detected; 1: overcurrent not detected
USB_SSTXP_DN2 A11 A11 O USB SuperSpeed transmitter differential pair (positive). Note: When routing, it is permissible to swap the positive and negative signals in Port 2 SSTX differential pair.
USB_SSTXN_DN2 B10 B10 O USB SuperSpeed transmitter differential pair (negative). Note: When routing, it is permissible to swap the positive and negative signals in Port 2 SSTX differential pair.
USB_SSRXP_DN2 B9 B9 I USB SuperSpeed receiver differential pair (positive). Note: When routing, it is permissible to swap the positive and negative signals in Port 2 SSRX differential pair.
USB_SSRXN_DN2 A10 A10 I USB SuperSpeed receiver differential pair (negative). Note: When routing, it is permissible to swap the positive and negative signals in Port 2 SSRX differential pair.
USB_DP_DN2 B12 B12 I/O USB High-speed differential transceiver (positive).
USB_DM_DN2 A13 A13 I/O USB High-speed differential transceiver (negative).
PWRON2# B34 B34 O PD USB DS Port 2 Power On Control for Downstream Power. The terminal is used for control of the downstream power switch. If the PWRON_POLARITY bit is set to 1, this pin is active high and the internal pull-down is disabled. This pin may be at low impedance when power rails are removed.
OVERCUR2# A37 A37 I PU USB DS Port 2 Overcurrent Detection. 0: overcurrent detected; 1: overcurrent not detected
USB_SSTXP_DN3 B28 O USB SuperSpeed transmitter differential pair (positive). Note: When routing, it is permissible to swap the positive and negative signals in Port 3 SSTX differential pair.
USB_SSTXN_DN3 A30 O USB SuperSpeed transmitter differential pair (negative). Note: When routing, it is permissible to swap the positive and negative signals in Port 3 SSTX differential pair.
USB_SSRXP_DN3 B27 I USB SuperSpeed receiver differential pair (positive). Note: When routing, it is permissible to swap the positive and negative signals in Port 3 SSRX differential pair.
USB_SSRXN_DN3 A29 I USB SuperSpeed receiver differential pair (negative). Note: When routing, it is permissible to swap the positive and negative signals in Port 3 SSRX differential pair.
USB_DP_DN3 B25 I/O USB High-speed differential transceiver (positive).
USB_DM_DN3 A27 I/O USB High-speed differential transceiver (negative).
PWRON3# A46 O PD USB DS Port 3 Power On Control for Downstream Power. The terminal is used for control of the downstream power switch. If the PWRON_POLARITY bit is set to 1, this pin is active high and the internal pull-down is disabled. This pin may be at low impedance when power rails are removed.
OVERCUR3# B43 I PU USB DS Port 3 Overcurrent Detection. 0: overcurrent detected; 1: overcurrent not detected
USB_SSTXP_DN4 B7 O USB SuperSpeed transmitter differential pair (positive). Note: When routing, it is permissible to swap the positive and negative signals in Port 4 SSTX differential pair.
USB_SSTXN_DN4 A8 O USB SuperSpeed transmitter differential pair (negative). Note: When routing, it is permissible to swap the positive and negative signals in Port 4 SSTX differential pair.
USB_SSRXP_DN4 B6 I USB SuperSpeed receiver differential pair (positive). Note: When routing, it is permissible to swap the positive and negative signals in Port 4 SSRX differential pair.
USB_SSRXN_DN4 A7 I USB SuperSpeed receiver differential pair (negative). Note: When routing, it is permissible to swap the positive and negative signals in Port 4 SSRX differential pair.
USB_DP_DN4 B5 I/O USB High-speed differential transceiver (positive).
USB_DM_DN4 A5 I/O USB High-speed differential transceiver (negative).
PWRON4# A48 O PD USB DS Port 4 Power On Control for Downstream Power. The terminal is used for control of the downstream power switch. If the PWRON_POLARITY bit is set to 1, this pin is active high and the internal pull-down is disabled. This pin may be at low impedance when power rails are removed.
OVERCUR4# B45 I PU USB DS Port 4 Overcurrent Detection. 0: overcurrent detected; 1: overcurrent not detected
I2C SIGNALS
SCL B2 B2 I/O I2C Clock – If no I2C device is present, pull this line down to disable.
SDA A2 A2 I/O I2C Data – If no I2C device is present, pull this line down to disable.
TEST AND MISCELLANEOUS SIGNALS
JTAG_TCK A32 A32 I PD JTAG test clock
JTAG_TDI A35 A35 I PU JTAG test data in
JTAG_TDO B31 B31 O PD JTAG test data out
JTAG_TMS B30 B30 I PU JTAG test mode select
JTAG_RST# B32 B32 I PD JTAG reset. Should be pulled low for normal operation.
GPIO0 A49 A49 I/O PU General purpose I/O
GPIO1 B46 B46 I/O PU
GPIO2 B47 B47 I/O PU
GPIO3 B48 B48 I/O PU
SMI B3 B3 O System management interrupt Note: This pin is active high and should not be pulled up/down.
R1EXT A24 A24 OI High precision external resistor used for calibration. A resister value of 9.09 KΩ ±1% accuracy is connected between the terminals R1EXT and R1EXTRTN.
R1EXTRTN B23 B23 OI
AUX_DET A52 A52 I Auxiliary power detect. This pin indicates if the TUSB73X0 is enabled for wakeup from D3cold. Note: If this feature is implemented, AUX_DET must be pulled to VDD33 to prevent leakage.
NC B4, A5, B5, B6, A7, B7, A8, B8, B13, A14, B25, A26, B26, A27, B27, B28, A29, B29, A30, A43, B43, B45, A46, A48 A14, B8, B13, A26, B29, A43 I/O Pins are not connected internally. Note: TUSB7320 pins B4 and B26 may be connected to VDDA_3P3 to support a dual-layout option with the TUSB7340.
POWER SIGNALS
VDD33 A3, A34, A39, A47, A51 A3, A34, A39, A47, A51 PWR 3.3-V I/O power rail
VDDA_3P3 B11, A19, A21, A25, B22, A44 B4, B11, A19, A21, A25, B22, B26, A44 PWR 3.3-V analog power rail
VDD11 A1, B1, A4, A6, A9, A12, A16, B17, B19, B24, A28, A33, A31, A38, B37, B40, B42, B44, A50 A1, B1, A4, A6, A9, A12, A16, B17, B19, B24, A28, A33, A31, A38, B37, B40, B42, B44, A50 PWR 1.1-V core power rail
VSS B20, A53 B20, A53 PWR Ground. The ground pad is labeled A53 for schematic purposes.
VSS_NC C1, C2, C3, C4 C1, C2, C3, C4 PWR The corner pins, which are for mechanical stability of the package, are connected to ground internally. These pins may be connected to VSS or left unconnected.
VSS_OSC B21 B21 PWR Oscillator return. If using a crystal, the load capacitors should use this signal as the return path and it should not be connected to the PCB ground. If using an oscillator, this should be connected to PCB Ground.