SLVSEQ3B September   2018  – May 2022 TVS1801

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings - JEDEC
    3. 7.3 ESD Ratings - IEC
    4. 7.4 Recommended Operating Conditions
    5. 7.5 Thermal Information
    6. 7.6 Electrical Characteristics
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 Protection Specifications
      2. 8.4.2 Reliability Testing
      3. 8.4.3 Zero Derating
      4. 8.4.4 Bidirectional Operation
      5. 8.4.5 Transient Performance
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documenation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Design Requirements

A typical operation for the TVS1801 would be protecting a 12-V input voltage line with a wide variance requiring extra standoff from the nominal voltage, up to 18 V, as shown in Figure 9-1. In this example, a TVS1801 is protecting the input to a LM2734, a buck converter with an input voltage range of 20 V and an absolute maximum input voltage of 24 V. This input must be protected against transient voltage surge events, and must have protection for reverse applied voltage in case of cable shorts or in case of operator wiring error. Without any input protection, this input voltage will rise to hundreds of volts for multiple microseconds, and violate the absolute maximum input voltage and harm the device if a surge event is caused by lightning, coupling, ringing, or any other fault condition. TI's Flat-Clamp technology provides surge protection diodes that can maximize the useable voltage range and clamp at a safe level for the system.