SGLS318A November   2005  – November 2015 UC2854B-EP

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Multiply/Square and Divide
      2. 8.3.2 Voltage Amplifier
      3. 8.3.3 Current Amplifier
      4. 8.3.4 Miscellaneous
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1  Switching Frequency
        2. 9.2.2.2  Inductor Selection
        3. 9.2.2.3  Output Capacitor
        4. 9.2.2.4  Switch and Diode
        5. 9.2.2.5  Current Sensing
        6. 9.2.2.6  Peak Current Limit
        7. 9.2.2.7  Multiplier Set-up
        8. 9.2.2.8  Feedforward Voltage
        9. 9.2.2.9  Multiplier Input Current
        10. 9.2.2.10 Oscillator Frequency
        11. 9.2.2.11 Current Error Amplifier Compensation
        12. 9.2.2.12 Voltage Error Amplifier Compensation
        13. 9.2.2.13 Feedforward Voltage Divider Filter Capacitors
        14. 9.2.2.14 Design Procedure Summary
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Community Resources
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

11 Layout

11.1 Layout Guidelines

As in any converter design, Layout is a critical portion of good power supply design.

Always try to use a low EMI inductor with a ferrite type closed core. Some examples would be toroid and encased E core inductors. Open core can be used if they have low EMI characteristics and are located a bit more away from the low power traces and components. Make the poles perpendicular to the PCB as well if using an open core. Stick cores usually emit the most unwanted noise.

Several signals paths that conduct fast changing currents or voltages can interact with stray inductance or parasitic capacitance to generate noise or degrade the power supplies performance.

• To help eliminate these problems, the Vcc pin should be bypassed to ground with a low ESR ceramic bypass capacitor with X5R or X7R dielectric.

• Care should be taken to minimize the loop area formed by the bypass capacitor connections, the Vcc pins, and the ground connections.

Try to run the feedback trace as far from the inductor and noisy power traces as possible. You would also like the feedback trace to be as direct as possible and somewhat thick. These two sometimes involve a trade-off, but keeping it away from inductor EMI and other noise sources is the more critical of the two. Run the feedback trace on the side of the PCB opposite of the inductor with a ground plane separating the two.

External compensation components for stability should also be placed close to the IC. Surface mount components are recommended here as well for the same reasons discussed for the filter capacitors. These should not be located very close to the inductor either.

Control circuitry and its associated components should be laid out minimizing the stray inductive loops.

11.2 Layout Example

UC2854B-EP layout_sgls318.gif Figure 13. Layout Recommendation