SLUSE80C
September 2021 – December 2022
UCC14240-Q1
PRODUCTION DATA
1
Features
2
Applications
3
Description
4
Revision History
5
Pin Configuration and Functions
6
Specifications
6.1
Absolute Maximum Ratings
6.2
ESD Ratings
6.3
Recommended Operating Conditions
6.4
Thermal Information
6.5
Power Ratings
6.6
Insulation Specifications
6.7
Safety-Related Certifications
6.8
Electrical Characteristics
6.9
Safety Limiting Values
6.10
Insulation Characteristics
6.11
Typical Characteristics
7
Detailed Description
7.1
Overview
7.2
Functional Block Diagram
7.3
Feature Description
7.3.1
Power Stage Operation
7.3.1.1
VDD-VEE Voltage Regulation
7.3.1.2
COM-VEE Voltage Regulation
7.3.1.3
Power Handling Capability
7.3.2
Output Voltage Soft Start
7.3.3
ENA and PG
7.3.4
Protection Functions
7.3.4.1
Input Undervoltage Lockout
7.3.4.2
Input Overvoltage Lockout
7.3.4.3
Output Overvoltage Protection
7.3.4.4
Overpower Protection
7.3.4.4.1
Output Undervoltage Protection
7.3.4.5
Overtemperature Protection
7.4
Device Functional Modes
8
Application and Implementation
8.1
Application Information
8.2
Typical Application
8.2.1
Design Requirements
8.2.2
Detailed Design Procedure
8.2.2.1
Capacitor Selection
8.2.2.2
RLIM Resistor Selection
8.2.3
Application Curves
8.3
System Examples
8.4
Power Supply Recommendations
8.5
Layout
8.5.1
Layout Guidelines
8.5.2
Layout Example
9
Device and Documentation Support
9.1
Documentation Support
9.1.1
Related Documentation
9.2
Receiving Notification of Documentation Updates
9.3
Support Resources
9.4
Trademarks
9.5
Electrostatic Discharge Caution
9.6
Glossary
10
Mechanical, Packaging, and Orderable Information
Package Options
Mechanical Data (Package|Pins)
DWN|36
MPSS132
Thermal pad, mechanical data (Package|Pins)
Orderable Information
sluse80c_oa
sluse80c_pm
6.11
Typical Characteristics
Figure 6-2
SOA Derating Curves: V
VDD-VEE
= 18 V, V
COM-VEE
= 5 V, No Load.
Figure 6-4
SOA Derating Curves: V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V, No Load
Figure 6-3
SOA Derating Curves: V
VDD-VEE
= 20 V, V
COM-VEE
= 5 V, No Load
Figure 6-5
Start-up: VIN = 24 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V, No Load
Figure 6-7
Load Transient Response: No Load to 1 W, VIN = 24 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V
Figure 6-9
V
VDD-VEE
Load Regulation: VIN = 21 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V
Figure 6-11
V
VDD-VEE
Load Regulation: VIN = 27 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V
Figure 6-13
V
COM-VEE
Load Regulation: VIN = 24 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V
Figure 6-15
Efficiency vs Load on V
VDD-VEE
: VIN = 21 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V, No Load on V
COM-VEE
Figure 6-17
Efficiency vs Load on V
VDD-VEE
: VIN = 27 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V, No Load on V
COM-VEE
Figure 6-19
Input Current vs Load on V
VDD-VEE
: VIN = 24 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V, No Load on V
COM-VEE
Figure 6-6
Shutdown: VIN = 24 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V, No Load
Figure 6-8
Load Transient Response: 1 W to No Load, VIN = 24 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V
Figure 6-10
V
VDD-VEE
Load Regulation: VIN = 24 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V
Figure 6-12
V
COM-VEE
Load Regulation: VIN = 21 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V
Figure 6-14
V
COM-VEE
Load Regulation: VIN = 27 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V
Figure 6-16
Efficiency vs Load on V
VDD-VEE
: VIN = 24 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V, No Load on V
COM-VEE
Figure 6-18
Input Current vs Load on V
VDD-VEE
: VIN = 21 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V, No Load on V
COM-VEE
Figure 6-20
Input Current vs Load on V
VDD-VEE
: VIN = 27 V, V
VDD-VEE
= 25 V, V
COM-VEE
= 5 V, No Load on V
COM-VEE