SLUSEV9A August   2023  – September 2023 UCC14340-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Insulation Specifications
    6. 7.6 Safety-Related Certifications
    7. 7.7 Electrical Characteristics
    8. 7.8 Safety Limiting Values
    9. 7.9 Typical Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Power Stage Operation
        1. 8.3.1.1 VDD-VEE Voltage Regulation
        2. 8.3.1.2 COM-VEE Voltage Regulation
        3. 8.3.1.3 Power Handling Capability
      2. 8.3.2 Output Voltage Soft Start
      3. 8.3.3 ENA and PG
      4. 8.3.4 Protection Functions
        1. 8.3.4.1 Input Undervoltage Lockout
        2. 8.3.4.2 Input Overvoltage Lockout
        3. 8.3.4.3 Output Undervoltage Protection
        4. 8.3.4.4 Output Overvoltage Protection
        5. 8.3.4.5 Overpower Protection
        6. 8.3.4.6 Overtemperature Protection
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Capacitor Selection
        2. 9.2.2.2 Single RLIM Resistor Selection
        3. 9.2.2.3 RDR Circuit Component Selection
        4. 9.2.2.4 Feedback Resistors Selection
  11. 10System Examples
  12. 11Power Supply Recommendations
  13. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  14. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  15. 14Mechanical, Packaging, and Orderable Information
  16. 15Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

Place ceramic decoupling capacitors as close as possible to the device pins. For the input supply, place the capacitors between pins 6 to 7 (VIN) and pins 8 to 9 (GNDP). For the isolated output supply, (VDD – VEE), place the capacitors between pins 28 to 29 (VDD) and pins 30 to 31 (VEE). For the isolated output supply, (COM – VEE), place an RLIM resistor between the RLIM pin and the gate driver COM supply input. Also place decoupling capacitors at the gate driver supply pins (VDD and COM) and at gate driver supply pins (COM and VEE) with values according to the following component calculation sections. These locations are of particular importance to all the decoupling capacitors because the capacitors supply the transient current associated with the fast switching waveforms of the power drive circuits. Ensure the capacitor dielectric material is compatible with the target application temperature.