SLUSF46A April   2024  – June 2024 UCC21231

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety Limiting Values
    8. 5.8  Electrical Characteristics
    9. 5.9  Switching Characteristics
    10. 5.10 Insulation Characteristics Curves
    11. 5.11 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Propagation Delay and Pulse Width Distortion
    2. 6.2 Rising and Falling Time
    3. 6.3 Input and Enable Response Time
    4. 6.4 Programmable Dead Time
    5. 6.5 Power-up UVLO Delay to OUTPUT
    6. 6.6 CMTI Testing
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 VDD, VCCI, and Undervoltage Lock Out (UVLO)
      2. 7.3.2 Input and Output Logic Table
      3. 7.3.3 Input Stage
      4. 7.3.4 Output Stage
      5. 7.3.5 Diode Structure in the UCC21231
    4. 7.4 Device Functional Modes
      1. 7.4.1 Enable Pin
      2. 7.4.2 Programmable Dead-Time (DT) Pin
        1. 7.4.2.1 Tying the DT Pin to VCC
        2. 7.4.2.2 DT Pin Connected to a Programming Resistor between DT and GND Pins
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Designing INA/INB Input Filter
        2. 8.2.2.2 Select External Bootstrap Diode and its Series Resistor
        3. 8.2.2.3 Gate Driver Output Resistor
        4. 8.2.2.4 Gate to Source Resistor Selection
        5. 8.2.2.5 Estimate Gate Driver Power Loss
        6. 8.2.2.6 Estimating Junction Temperature
        7. 8.2.2.7 Selecting VCCI, VDDA/B Capacitor
          1. 8.2.2.7.1 Selecting a VCCI Capacitor
          2. 8.2.2.7.2 Selecting a VDDA (Bootstrap) Capacitor
          3. 8.2.2.7.3 Select a VDDB Capacitor
        8. 8.2.2.8 Dead Time Setting Guidelines
        9. 8.2.2.9 Application Circuits with Output Stage Negative Bias
      3. 8.2.3 Application Curves
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Certifications
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Support Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tape and Reel Information
    2. 13.2 Mechanical Data

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DLG|13
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description

The UCC21231 is an isolated dual-channel gate driver family with programmable dead time and wide temperature range. This device exhibits consistent performance and robustness under extreme temperature conditions. UCC21231 is designed with 4A peak-source and 6A peak-sink current to drive power MOSFET, and GaN transistors.

The UCC21231 can be configured as two low-side drivers, two high-side drivers, or a half-bridge driver. The input side is isolated from the two output drivers by a 1.6kVRMS isolation barrier, with a minimum of 125V/ns common-mode transient immunity (CMTI).

Protection features include: resistor programmable dead time, enable feature to shut down both outputs simultaneously, integrated de-glitch filter that rejects input transients shorter than 5ns, and negative voltage handling for up to –2V spikes for 200ns on input and output pins. All supplies have UVLO protection.

The UCC21231 device accepts VDD supply voltages up to 25V. An input VCCI range from 3V to 5.5V makes the driver suitable for interfacing with digital controllers. All supply voltage pins have undervoltage lock-out (UVLO) protection.

With all these advanced features, the UCC21231 device enables high efficiency, high power density, and robustness in a wide variety of power applications.

Device Information
PART NUMBER PACKAGE(1) REC. VDD SUPPLY MIN
UCC21231ADLGR DLG (WSON 13) 6.7V
For all available packages, see Section 13.
UCC21231 Typical Application Schematic Typical Application Schematic